Reducing the Number of Homogeneous Linear Equations in Finding Annihilators

Given a Boolean function f on n-variables, we find a reduced set of homogeneous linear equations by solving which one can decide whether there exist annihilators at degree d or not. Using our method the size of the associated matrix becomes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dalai, Deepak Kumar, Maitra, Subhamoy
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a Boolean function f on n-variables, we find a reduced set of homogeneous linear equations by solving which one can decide whether there exist annihilators at degree d or not. Using our method the size of the associated matrix becomes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu_f \times (\sum_{i=0}^{d} \binom{n}{i} -- \mu_f)$\end{document}, where, νf = |{x | wt(x) > d, f(x) = 1}| and μf = |{x | wt(x) ≤d, f(x) = 1}| and the time required to construct the matrix is same as the size of the matrix. This is a preprocessing step before the exact solution strategy (to decide on the existence of the annihilators) that requires to solve the set of homogeneous linear equations (basically to calculate the rank) and this can be improved when the number of variables and the number of equations are minimized. As the linear transformation on the input variables of the Boolean function keeps the degree of the annihilators invariant, our preprocessing step can be more efficiently applied if one can find an affine transformation over f(x) to get h(x) = f(Bx+b) such that μh = |{x | h(x) = 1, wt(x) ≤d}| is maximized (and in turn νh is minimized too). We present an efficient heuristic towards this. Our study also shows for what kind of Boolean functions the asymptotic reduction in the size of the matrix is possible and when the reduction is not asymptotic but constant.
ISSN:0302-9743
1611-3349
DOI:10.1007/11863854_33