Blind Source Separation in the Time-Frequency Domain Based on Multiple Hypothesis Testing

This paper considers a time-frequency (t-f)-based approach for blind separation of nonstationary signals. In particular, we propose a time-frequency "point selection" algorithm based on multiple hypothesis testing, which allows automatic selection of auto- or cross-source locations in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2008-06, Vol.56 (6), p.2267-2279
Hauptverfasser: Cirillo, L., Zoubir, A., Amin, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers a time-frequency (t-f)-based approach for blind separation of nonstationary signals. In particular, we propose a time-frequency "point selection" algorithm based on multiple hypothesis testing, which allows automatic selection of auto- or cross-source locations in the time-frequency plane. The selected t-f points are then used via a joint diagonalization and off-diagonalization algorithm to perform source separation. The proposed algorithm is developed assuming deterministic signals with additive white complex Gaussian noise. A performance comparison of the proposed and existing approaches is provided.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2007.914316