Blind Source Separation in the Time-Frequency Domain Based on Multiple Hypothesis Testing
This paper considers a time-frequency (t-f)-based approach for blind separation of nonstationary signals. In particular, we propose a time-frequency "point selection" algorithm based on multiple hypothesis testing, which allows automatic selection of auto- or cross-source locations in the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2008-06, Vol.56 (6), p.2267-2279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers a time-frequency (t-f)-based approach for blind separation of nonstationary signals. In particular, we propose a time-frequency "point selection" algorithm based on multiple hypothesis testing, which allows automatic selection of auto- or cross-source locations in the time-frequency plane. The selected t-f points are then used via a joint diagonalization and off-diagonalization algorithm to perform source separation. The proposed algorithm is developed assuming deterministic signals with additive white complex Gaussian noise. A performance comparison of the proposed and existing approaches is provided. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2007.914316 |