On the Kertész line: thermodynamic versus geometric criticality
The critical behaviour of the Ising model in the absence of an external magnetic field can be specified either through spontaneous symmetry breaking (thermal criticality) or through cluster percolation (geometric criticality). We extend this to finite external fields for the case of the Potts'...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2008-02, Vol.41 (8), p.085001 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The critical behaviour of the Ising model in the absence of an external magnetic field can be specified either through spontaneous symmetry breaking (thermal criticality) or through cluster percolation (geometric criticality). We extend this to finite external fields for the case of the Potts' model, showing that a geometric analysis leads to the same first order/second order structure as found in thermodynamic studies. We calculate the Kertész line, separating percolating and non-percolating regimes, both analytically and numerically for the Potts model in presence of an external magnetic field. |
---|---|
ISSN: | 1751-8121 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8113/41/8/085001 |