Cooling, Gravity, and Geometry: Flow-driven Massive Core Formation

We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity, trig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2008-02, Vol.674 (1), p.316-328
Hauptverfasser: Heitsch, Fabian, Hartmann, Lee W, Slyz, Adrianne D, Devriendt, Julien E. G, Burkert, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity, triggered by a combination of strong thermal and dynamical instabilities, causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few hundred M [unk]. The forming clouds do not reach an equilibrium state, although the motions within the clouds appear to be comparable to virial. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.
ISSN:0004-637X
1538-4357
DOI:10.1086/523697