Polymorphism, Subtyping, Whole Program Analysis and Accurate Data Types in Usage Analysis
There are a number of choices to be made in the design of a type based usage analysis. Some of these are: Should the analysis be monomorphic or have some degree of polymorphism? What about subtyping? How should the analysis deal with user defined algebraic data types? Should it be a whole program an...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are a number of choices to be made in the design of a type based usage analysis. Some of these are: Should the analysis be monomorphic or have some degree of polymorphism? What about subtyping? How should the analysis deal with user defined algebraic data types? Should it be a whole program analysis?
Several researchers have speculated that these features are important but there has been a lack of empirical evidence. In this paper we present a systematic evaluation of each of these features in the context of a full scale implementation of a usage analysis for Haskell.
Our measurements show that all features increase the precision. It is, however, not necessary to have them all to obtain an acceptable precision. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11924661_13 |