Thickness effect on the microstructure, morphology and optoelectronic properties of ZnS films

Thin films of ZnS with thicknesses ranging from 100 to 600 nm have been deposited on glass substrates by close spaced thermal evaporation. All the films were grown at the same deposition conditions except the deposition time. The effect of thickness on the physical properties of ZnS films has been s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2008-01, Vol.20 (3), p.035205-035205 (10)
Hauptverfasser: Prathap, P, Revathi, N, Venkata Subbaiah, Y P, Ramakrishna Reddy, K T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thin films of ZnS with thicknesses ranging from 100 to 600 nm have been deposited on glass substrates by close spaced thermal evaporation. All the films were grown at the same deposition conditions except the deposition time. The effect of thickness on the physical properties of ZnS films has been studied. The experimental results indicated that the thickness affects the structure, lattice strain, surface morphology and optoelectronic properties of ZnS films significantly. The films deposited at a thickness of 100 nm showed hexagonal structure whereas films of thickness 300 nm or more showed cubic structure. However, coexistence of both cubic and hexagonal structures was observed in the films of 200 nm thickness. The surface roughness of the films showed an increasing trend at higher thicknesses of the films. A blue-shift in the energy band gap along with an intense UV emission band was observed with the decrease of film thickness, which are ascribed to the quantum confinement effect. The behaviour of optical constants such as refractive index and extinction coefficient were analysed. The variation of refractive index and extinction coefficient with thickness was explained on the basis of the contribution from the packing density of the layers. The electrical resistivity as well as the activation energy were evaluated and found to decrease with the increase of film thickness. The thickness had a significant influence on the optical band gap as well as the luminescence intensity.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/20/03/035205