Approximation Scheme for Lowest Outdegree Orientation and Graph Density Measures

We deal with the problem of finding such an orientation of a given graph that the largest number of edges leaving a vertex (called the outdegree of the orientation) is small. For any ε∈(0,1) we show an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: KOWALIK, Lukasz
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We deal with the problem of finding such an orientation of a given graph that the largest number of edges leaving a vertex (called the outdegree of the orientation) is small. For any ε∈(0,1) we show an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(|E(G)|/\varepsilon)$\end{document} time algorithm which finds an orientation of an input graph G with outdegree at most ⌈(1+ε)d*⌉, where d* is the maximum density of a subgraph of G. It is known that the optimal value of orientation outdegree is ⌈d* ⌉. Our algorithm has applications in constructing labeling schemes, introduced by Kannan et al. in [18] and in approximating such graph density measures as arboricity, pseudoarboricity and maximum density. Our results improve over the previous, 2-approximation algorithms by Aichholzer et al. [1] (for orientation / pseudoarboricity), by Arikati et al. [3] (for arboricity) and by Charikar [5] (for maximum density).
ISSN:0302-9743
1611-3349
DOI:10.1007/11940128_56