Approximation Scheme for Lowest Outdegree Orientation and Graph Density Measures
We deal with the problem of finding such an orientation of a given graph that the largest number of edges leaving a vertex (called the outdegree of the orientation) is small. For any ε∈(0,1) we show an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \use...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We deal with the problem of finding such an orientation of a given graph that the largest number of edges leaving a vertex (called the outdegree of the orientation) is small.
For any ε∈(0,1) we show an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\tilde{O}(|E(G)|/\varepsilon)$\end{document} time algorithm which finds an orientation of an input graph G with outdegree at most ⌈(1+ε)d*⌉, where d* is the maximum density of a subgraph of G. It is known that the optimal value of orientation outdegree is ⌈d* ⌉.
Our algorithm has applications in constructing labeling schemes, introduced by Kannan et al. in [18] and in approximating such graph density measures as arboricity, pseudoarboricity and maximum density. Our results improve over the previous, 2-approximation algorithms by Aichholzer et al. [1] (for orientation / pseudoarboricity), by Arikati et al. [3] (for arboricity) and by Charikar [5] (for maximum density). |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11940128_56 |