Diagnosing Self-efficacy in Intelligent Tutoring Systems: An Empirical Study
Self-efficacy is an individual’s belief about her ability to perform well in a given situation. Because self-efficacious students are effective learners, endowing intelligent tutoring systems with the ability to diagnose self-efficacy could lead to improved pedagogy. Self-efficacy is influenced by (...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-efficacy is an individual’s belief about her ability to perform well in a given situation. Because self-efficacious students are effective learners, endowing intelligent tutoring systems with the ability to diagnose self-efficacy could lead to improved pedagogy. Self-efficacy is influenced by (and influences) affective state. Thus, physiological data might be used to predict a students’ level of self-efficacy. This paper investigates an inductive approach to automatically constructing models of self-efficacy that can be used at runtime to inform pedagogical decisions. In an empirical study, two families of self-efficacy models were induced: a static model, learned solely from pre-test (non-intrusively collected) data, and a dynamic model, learned from both pre-test data as well as runtime physiological data collected with a biofeedback apparatus. The resulting static model is able to predict students’ real-time levels of self-efficacy with reasonable accuracy, while the physiologically informed dynamic model is even more accurate. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11774303_56 |