Diagnosing Self-efficacy in Intelligent Tutoring Systems: An Empirical Study

Self-efficacy is an individual’s belief about her ability to perform well in a given situation. Because self-efficacious students are effective learners, endowing intelligent tutoring systems with the ability to diagnose self-efficacy could lead to improved pedagogy. Self-efficacy is influenced by (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McQuiggan, Scott W., Lester, James C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-efficacy is an individual’s belief about her ability to perform well in a given situation. Because self-efficacious students are effective learners, endowing intelligent tutoring systems with the ability to diagnose self-efficacy could lead to improved pedagogy. Self-efficacy is influenced by (and influences) affective state. Thus, physiological data might be used to predict a students’ level of self-efficacy. This paper investigates an inductive approach to automatically constructing models of self-efficacy that can be used at runtime to inform pedagogical decisions. In an empirical study, two families of self-efficacy models were induced: a static model, learned solely from pre-test (non-intrusively collected) data, and a dynamic model, learned from both pre-test data as well as runtime physiological data collected with a biofeedback apparatus. The resulting static model is able to predict students’ real-time levels of self-efficacy with reasonable accuracy, while the physiologically informed dynamic model is even more accurate.
ISSN:0302-9743
1611-3349
DOI:10.1007/11774303_56