Additive Preference Model with Piecewise Linear Components Resulting from Dominance-Based Rough Set Approximations
Dominance-based Rough Set Approach (DRSA) has been proposed for multi-criteria classification problems in order to handle inconsistencies in the input information with respect to the dominance principle. The end result of DRSA is a decision rule model of Decision Maker preferences. In this paper, we...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dominance-based Rough Set Approach (DRSA) has been proposed for multi-criteria classification problems in order to handle inconsistencies in the input information with respect to the dominance principle. The end result of DRSA is a decision rule model of Decision Maker preferences. In this paper, we consider an additive function model resulting from dominance-based rough approximations. The presented approach is similar to UTA and UTADIS methods. However, we define a goal function of the optimization problem in a similar way as it is done in Support Vector Machines (SVM). The problem may also be defined as the one of searching for linear value functions in a transformed feature space obtained by exhaustive binarization of criteria. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11785231_53 |