Additive Preference Model with Piecewise Linear Components Resulting from Dominance-Based Rough Set Approximations

Dominance-based Rough Set Approach (DRSA) has been proposed for multi-criteria classification problems in order to handle inconsistencies in the input information with respect to the dominance principle. The end result of DRSA is a decision rule model of Decision Maker preferences. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dembczyński, Krzysztof, Kotłowski, Wojciech, Słowiński, Roman
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dominance-based Rough Set Approach (DRSA) has been proposed for multi-criteria classification problems in order to handle inconsistencies in the input information with respect to the dominance principle. The end result of DRSA is a decision rule model of Decision Maker preferences. In this paper, we consider an additive function model resulting from dominance-based rough approximations. The presented approach is similar to UTA and UTADIS methods. However, we define a goal function of the optimization problem in a similar way as it is done in Support Vector Machines (SVM). The problem may also be defined as the one of searching for linear value functions in a transformed feature space obtained by exhaustive binarization of criteria.
ISSN:0302-9743
1611-3349
DOI:10.1007/11785231_53