A New Algorithm of Automatic Programming: GEGEP

Gene Expression Programming (GEP) has wide searching ability, simple representation, powerful genetic operators and the creation of high levels of complexity. However, it has some shortcomings, such as blind searching and when dealing with complex problems, its genotype under Karva notation does not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Du, Xin, Li, Yueqiao, Xie, Datong, Kang, Lishan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gene Expression Programming (GEP) has wide searching ability, simple representation, powerful genetic operators and the creation of high levels of complexity. However, it has some shortcomings, such as blind searching and when dealing with complex problems, its genotype under Karva notation does not allow hierarchical composition of the solution, which impairs the efficiency of the algorithm. So a new automatic programming method is proposed: Gene Estimated Gene Expression Programming(GEGEP) which combines the advantages of Estimation of Distribution Algorithm (EDA) and basic GEP. Compared with basic GEP, it mainly has the following characteristics: First, improve the gene expression structure, the head of gene is divided into a head and a body, which can be used to introduce learning mechanism. Second, the homeotic gene which is also composed of a head, a body and a tail is used which can increase its searching ability. Third, the idea of EDA is introduced, which can enhance its learning ability and accelerate convergence rate. The results of experiments show that GEGEP has better fitting and predicted precision, faster convergence speed than basic GEP and traditional GP.
ISSN:0302-9743
1611-3349
DOI:10.1007/11903697_38