Comparison of Novel Dimension Reduction Methods in Face Verification

The problem of high dimensionality in face verification tasks has recently been simplified by the use of underlying spatial structures as proposed in the Two Dimensional Principal Component Analysis, the Two Dimensional Linear Discriminant Analysis and the Coupled Subspaces Analysis. Besides, the Sm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rodríguez-Aragón, Licesio J., Conde, Cristina, Cabello, Enrique
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of high dimensionality in face verification tasks has recently been simplified by the use of underlying spatial structures as proposed in the Two Dimensional Principal Component Analysis, the Two Dimensional Linear Discriminant Analysis and the Coupled Subspaces Analysis. Besides, the Small Sample Size problem that caused serious difficulties in traditional LDA has been overcome by the spatial approach 2DLDA. The application of these advances to facial verification techniques using different SVM schemes as classification algorithm is here shown. The experiments have been performed over a wide facial database (FRAV2D including 109 subjects), in which only one interest variable was changed in each experiment: illumination, pose, expression or occlusion. For training the SVMs, only two images per subject have been provided to fit in the small sample size problem.
ISSN:0302-9743
1611-3349
DOI:10.1007/11867661_28