EWFCM Algorithm and Region-Based Multi-level Thresholding

Multi-level thresholding is a method that is widely used in image segmentation. However, most of the existing methods are not suited to be directly used in applicable fields, and moreover they are not extended into a step of image segmentation. This paper proposes region-based multi-level thresholdi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oh, Jun-Taek, Kim, Wook-Hyun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-level thresholding is a method that is widely used in image segmentation. However, most of the existing methods are not suited to be directly used in applicable fields, and moreover they are not extended into a step of image segmentation. This paper proposes region-based multi-level thresholding as an image segmentation method. At first, we classify pixels of each color channel to two clusters by using EWFCM algorithm that is an improved FCM algorithm with spatial information between pixels. To obtain better segmentation results, a reduction of clusters is then performed by a region-based reclassification step based on a similarity between regions existing in a cluster and the other clusters. We finally perform a region merging by Bayesian algorithm based on Kullback-Leibler distance between a region and the neighboring regions as a post-processing method, as many regions still exist in image. Experiments show that region-based multi-level thresholding is superior to cluster-, pixel-based multi-level thresholding, and an existing method and much better segmentation results are obtained by the proposed post-processing method.
ISSN:0302-9743
1611-3349
DOI:10.1007/11881599_107