A Biologically Motivated System for Unconstrained Online Learning of Visual Objects
We present a biologically motivated system for object recognition that is capable of online learning of several objects based on interaction with a human teacher. The training is unconstrained in the sense that arbitrary objects can be freely presented in front of a stereo camera system and labeled...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a biologically motivated system for object recognition that is capable of online learning of several objects based on interaction with a human teacher. The training is unconstrained in the sense that arbitrary objects can be freely presented in front of a stereo camera system and labeled by speech input. The architecture unites biological principles such as appearance-based representation in topographical feature detection hierarchies and context-driven transfer between different levels of object memory. The learning is fully online and thus avoids an artificial separation of the interaction into training and test phases. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11840930_53 |