Local Selection of Model Parameters in Probability Density Function Estimation
Here we present a novel probability density estimation model. The classical Parzen window approach builds a spherical Gaussian density around every input sample. Our proposal selects a Gaussian specifically tuned for each sample, with an automated estimation of the local intrinsic dimensionality of...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here we present a novel probability density estimation model. The classical Parzen window approach builds a spherical Gaussian density around every input sample. Our proposal selects a Gaussian specifically tuned for each sample, with an automated estimation of the local intrinsic dimensionality of the embedded manifold and the local noise variance. This leads to outperform other proposals where local parameter selection is not allowed, like the manifold Parzen windows. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11840930_30 |