Local Selection of Model Parameters in Probability Density Function Estimation

Here we present a novel probability density estimation model. The classical Parzen window approach builds a spherical Gaussian density around every input sample. Our proposal selects a Gaussian specifically tuned for each sample, with an automated estimation of the local intrinsic dimensionality of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: López-Rubio, Ezequiel, Ortiz-de-Lazcano-Lobato, Juan Miguel, López-Rodríguez, Domingo, Mérida-Casermeiro, Enrique, del Carmen Vargas-González, María
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we present a novel probability density estimation model. The classical Parzen window approach builds a spherical Gaussian density around every input sample. Our proposal selects a Gaussian specifically tuned for each sample, with an automated estimation of the local intrinsic dimensionality of the embedded manifold and the local noise variance. This leads to outperform other proposals where local parameter selection is not allowed, like the manifold Parzen windows.
ISSN:0302-9743
1611-3349
DOI:10.1007/11840930_30