Scalable Dynamic Self-Organising Maps for Mining Massive Textual Data
Traditional text clustering methods require enormous computing resources, which make them inappropriate for processing large scale data collections. In this paper we present a clustering method based on the word category map approach using a two-level Growing Self-Organising Map (GSOM). A significan...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional text clustering methods require enormous computing resources, which make them inappropriate for processing large scale data collections. In this paper we present a clustering method based on the word category map approach using a two-level Growing Self-Organising Map (GSOM). A significant part of the clustering task is divided into separate sub-tasks that can be executed on different computers using the emergent Grid technology. Thus enabling the rapid analysis of information gathered globally. The performance of the proposed method is comparable to the traditional approaches while improves the execution time by 15 times. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11893295_30 |