Scalable Dynamic Self-Organising Maps for Mining Massive Textual Data

Traditional text clustering methods require enormous computing resources, which make them inappropriate for processing large scale data collections. In this paper we present a clustering method based on the word category map approach using a two-level Growing Self-Organising Map (GSOM). A significan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhai, Yu Zheng, Hsu, Arthur, Halgamuge, Saman K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional text clustering methods require enormous computing resources, which make them inappropriate for processing large scale data collections. In this paper we present a clustering method based on the word category map approach using a two-level Growing Self-Organising Map (GSOM). A significant part of the clustering task is divided into separate sub-tasks that can be executed on different computers using the emergent Grid technology. Thus enabling the rapid analysis of information gathered globally. The performance of the proposed method is comparable to the traditional approaches while improves the execution time by 15 times.
ISSN:0302-9743
1611-3349
DOI:10.1007/11893295_30