Predicting Chaotic Time Series by Boosted Recurrent Neural Networks
This paper discusses the use of a recent boosting algorithm for recurrent neural networks as a tool to model nonlinear dynamical systems. It combines a large number of RNNs, each of which is generated by training on a different set of examples. This algorithm is based on the boosting algorithm where...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper discusses the use of a recent boosting algorithm for recurrent neural networks as a tool to model nonlinear dynamical systems. It combines a large number of RNNs, each of which is generated by training on a different set of examples. This algorithm is based on the boosting algorithm where difficult examples are concentrated on during the learning process. However, unlike the original algorithm, all examples available are taken into account. The ability of the method to internally encode useful information on the underlying process is illustrated by several experiments on well known chaotic processes. Our model is able to find an appropriate internal representation of the underlying process from the observation of a subset of the states variables. We obtain improved prediction performances. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11893257_92 |