Clustering with a Semantic Criterion Based on Dimensionality Analysis
Considering data processing problems from a geometric point of view, previous work has shown that the intrinsic dimension of the data could have some semantics. In this paper, we start from the consideration of this inherent topology property and propose the usage of such a semantic criterion for cl...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Considering data processing problems from a geometric point of view, previous work has shown that the intrinsic dimension of the data could have some semantics. In this paper, we start from the consideration of this inherent topology property and propose the usage of such a semantic criterion for clustering. The corresponding learning algorithms are provided. Theoretical justification and analysis of the algorithms are shown. Promising results are reported by the experiments that generally fail with conventional clustering algorithms. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11893257_88 |