Spline Surface Intersections Optimized for GPUs
A commodity-type graphics card with its graphics processing unit (GPU) is used to detect, compute and visualize the intersection of two spline surfaces, or the self-intersection of a single spline surface. The parallelism of the GPU facilitates fast and efficient subdivision and bounding box testing...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | |
container_start_page | 204 |
container_title | |
container_volume | |
creator | Briseid, Sverre Dokken, Tor Hagen, Trond Runar Nygaard, Jens Olav |
description | A commodity-type graphics card with its graphics processing unit (GPU) is used to detect, compute and visualize the intersection of two spline surfaces, or the self-intersection of a single spline surface. The parallelism of the GPU facilitates fast and efficient subdivision and bounding box testing of smaller spline patches and their corresponding normal subpatches. This subdivision and testing is iterated until a prescribed level of accuracy is reached, after which results are returned to the main computer. We observe speedups up to 17 times relative to a contemporary 64 bit CPU. |
doi_str_mv | 10.1007/11758549_32 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19969447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19969447</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-9c4d5ebb1b508245665fae172ec01151381cc91dca2b9e0e5be457a96b24ae2a3</originalsourceid><addsrcrecordid>eNpVkL1OwzAYRc2fRFUy8QJZGBhC_fnfI6qgVKpUpNLZst0vKNAmkR0GeHqCygB3ucM9usMh5BroHVCqZwBaGims4-yEFFYbLgXlghtlTskEFEDFubBn_zYJ52RCOWWV1YJfkiLnNzqGgzKMTchs0--bFsvNR6p9xHLZDpgyxqHp2lyu-6E5NF-4K-sulYvnbb4iF7XfZyx-e0q2jw8v86dqtV4s5_erqmdgh8pGsZMYAgRJDRNSKVl7BM0wUgAJ3ECMFnbRs2CRogwopPZWBSY8Ms-n5Ob42_sc_b5Ovo1Ndn1qDj59OrBWWSH0yN0euTxO7SsmF7ruPTug7kea-yONfwNFaVe8</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spline Surface Intersections Optimized for GPUs</title><source>Springer Books</source><creator>Briseid, Sverre ; Dokken, Tor ; Hagen, Trond Runar ; Nygaard, Jens Olav</creator><contributor>Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</contributor><creatorcontrib>Briseid, Sverre ; Dokken, Tor ; Hagen, Trond Runar ; Nygaard, Jens Olav ; Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</creatorcontrib><description>A commodity-type graphics card with its graphics processing unit (GPU) is used to detect, compute and visualize the intersection of two spline surfaces, or the self-intersection of a single spline surface. The parallelism of the GPU facilitates fast and efficient subdivision and bounding box testing of smaller spline patches and their corresponding normal subpatches. This subdivision and testing is iterated until a prescribed level of accuracy is reached, after which results are returned to the main computer. We observe speedups up to 17 times relative to a contemporary 64 bit CPU.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540343851</identifier><identifier>ISBN: 3540343857</identifier><identifier>ISBN: 3540343792</identifier><identifier>ISBN: 9783540343790</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540343868</identifier><identifier>EISBN: 3540343865</identifier><identifier>DOI: 10.1007/11758549_32</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Degree ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Degenerate Normal ; Exact sciences and technology ; Intersection Algorithm ; Intersection Curve ; Pattern recognition. Digital image processing. Computational geometry ; Spline Surface</subject><ispartof>Computational Science – ICCS 2006, 2006, p.204-211</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11758549_32$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11758549_32$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19969447$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Alexandrov, Vassil N.</contributor><contributor>Dongarra, Jack</contributor><contributor>van Albada, Geert Dick</contributor><contributor>Sloot, Peter M. A.</contributor><creatorcontrib>Briseid, Sverre</creatorcontrib><creatorcontrib>Dokken, Tor</creatorcontrib><creatorcontrib>Hagen, Trond Runar</creatorcontrib><creatorcontrib>Nygaard, Jens Olav</creatorcontrib><title>Spline Surface Intersections Optimized for GPUs</title><title>Computational Science – ICCS 2006</title><description>A commodity-type graphics card with its graphics processing unit (GPU) is used to detect, compute and visualize the intersection of two spline surfaces, or the self-intersection of a single spline surface. The parallelism of the GPU facilitates fast and efficient subdivision and bounding box testing of smaller spline patches and their corresponding normal subpatches. This subdivision and testing is iterated until a prescribed level of accuracy is reached, after which results are returned to the main computer. We observe speedups up to 17 times relative to a contemporary 64 bit CPU.</description><subject>Algebraic Degree</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Degenerate Normal</subject><subject>Exact sciences and technology</subject><subject>Intersection Algorithm</subject><subject>Intersection Curve</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Spline Surface</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540343851</isbn><isbn>3540343857</isbn><isbn>3540343792</isbn><isbn>9783540343790</isbn><isbn>9783540343868</isbn><isbn>3540343865</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkL1OwzAYRc2fRFUy8QJZGBhC_fnfI6qgVKpUpNLZst0vKNAmkR0GeHqCygB3ucM9usMh5BroHVCqZwBaGims4-yEFFYbLgXlghtlTskEFEDFubBn_zYJ52RCOWWV1YJfkiLnNzqGgzKMTchs0--bFsvNR6p9xHLZDpgyxqHp2lyu-6E5NF-4K-sulYvnbb4iF7XfZyx-e0q2jw8v86dqtV4s5_erqmdgh8pGsZMYAgRJDRNSKVl7BM0wUgAJ3ECMFnbRs2CRogwopPZWBSY8Ms-n5Ob42_sc_b5Ovo1Ndn1qDj59OrBWWSH0yN0euTxO7SsmF7ruPTug7kea-yONfwNFaVe8</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Briseid, Sverre</creator><creator>Dokken, Tor</creator><creator>Hagen, Trond Runar</creator><creator>Nygaard, Jens Olav</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Spline Surface Intersections Optimized for GPUs</title><author>Briseid, Sverre ; Dokken, Tor ; Hagen, Trond Runar ; Nygaard, Jens Olav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-9c4d5ebb1b508245665fae172ec01151381cc91dca2b9e0e5be457a96b24ae2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebraic Degree</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Degenerate Normal</topic><topic>Exact sciences and technology</topic><topic>Intersection Algorithm</topic><topic>Intersection Curve</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Spline Surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Briseid, Sverre</creatorcontrib><creatorcontrib>Dokken, Tor</creatorcontrib><creatorcontrib>Hagen, Trond Runar</creatorcontrib><creatorcontrib>Nygaard, Jens Olav</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Briseid, Sverre</au><au>Dokken, Tor</au><au>Hagen, Trond Runar</au><au>Nygaard, Jens Olav</au><au>Alexandrov, Vassil N.</au><au>Dongarra, Jack</au><au>van Albada, Geert Dick</au><au>Sloot, Peter M. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spline Surface Intersections Optimized for GPUs</atitle><btitle>Computational Science – ICCS 2006</btitle><date>2006</date><risdate>2006</risdate><spage>204</spage><epage>211</epage><pages>204-211</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540343851</isbn><isbn>3540343857</isbn><isbn>3540343792</isbn><isbn>9783540343790</isbn><eisbn>9783540343868</eisbn><eisbn>3540343865</eisbn><abstract>A commodity-type graphics card with its graphics processing unit (GPU) is used to detect, compute and visualize the intersection of two spline surfaces, or the self-intersection of a single spline surface. The parallelism of the GPU facilitates fast and efficient subdivision and bounding box testing of smaller spline patches and their corresponding normal subpatches. This subdivision and testing is iterated until a prescribed level of accuracy is reached, after which results are returned to the main computer. We observe speedups up to 17 times relative to a contemporary 64 bit CPU.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11758549_32</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computational Science – ICCS 2006, 2006, p.204-211 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19969447 |
source | Springer Books |
subjects | Algebraic Degree Applied sciences Artificial intelligence Computer science control theory systems Degenerate Normal Exact sciences and technology Intersection Algorithm Intersection Curve Pattern recognition. Digital image processing. Computational geometry Spline Surface |
title | Spline Surface Intersections Optimized for GPUs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spline%20Surface%20Intersections%20Optimized%20for%20GPUs&rft.btitle=Computational%20Science%20%E2%80%93%20ICCS%202006&rft.au=Briseid,%20Sverre&rft.date=2006&rft.spage=204&rft.epage=211&rft.pages=204-211&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540343851&rft.isbn_list=3540343857&rft.isbn_list=3540343792&rft.isbn_list=9783540343790&rft_id=info:doi/10.1007/11758549_32&rft_dat=%3Cpascalfrancis_sprin%3E19969447%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540343868&rft.eisbn_list=3540343865&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |