Spline Surface Intersections Optimized for GPUs

A commodity-type graphics card with its graphics processing unit (GPU) is used to detect, compute and visualize the intersection of two spline surfaces, or the self-intersection of a single spline surface. The parallelism of the GPU facilitates fast and efficient subdivision and bounding box testing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Briseid, Sverre, Dokken, Tor, Hagen, Trond Runar, Nygaard, Jens Olav
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue
container_start_page 204
container_title
container_volume
creator Briseid, Sverre
Dokken, Tor
Hagen, Trond Runar
Nygaard, Jens Olav
description A commodity-type graphics card with its graphics processing unit (GPU) is used to detect, compute and visualize the intersection of two spline surfaces, or the self-intersection of a single spline surface. The parallelism of the GPU facilitates fast and efficient subdivision and bounding box testing of smaller spline patches and their corresponding normal subpatches. This subdivision and testing is iterated until a prescribed level of accuracy is reached, after which results are returned to the main computer. We observe speedups up to 17 times relative to a contemporary 64 bit CPU.
doi_str_mv 10.1007/11758549_32
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19969447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19969447</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-9c4d5ebb1b508245665fae172ec01151381cc91dca2b9e0e5be457a96b24ae2a3</originalsourceid><addsrcrecordid>eNpVkL1OwzAYRc2fRFUy8QJZGBhC_fnfI6qgVKpUpNLZst0vKNAmkR0GeHqCygB3ucM9usMh5BroHVCqZwBaGims4-yEFFYbLgXlghtlTskEFEDFubBn_zYJ52RCOWWV1YJfkiLnNzqGgzKMTchs0--bFsvNR6p9xHLZDpgyxqHp2lyu-6E5NF-4K-sulYvnbb4iF7XfZyx-e0q2jw8v86dqtV4s5_erqmdgh8pGsZMYAgRJDRNSKVl7BM0wUgAJ3ECMFnbRs2CRogwopPZWBSY8Ms-n5Ob42_sc_b5Ovo1Ndn1qDj59OrBWWSH0yN0euTxO7SsmF7ruPTug7kea-yONfwNFaVe8</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spline Surface Intersections Optimized for GPUs</title><source>Springer Books</source><creator>Briseid, Sverre ; Dokken, Tor ; Hagen, Trond Runar ; Nygaard, Jens Olav</creator><contributor>Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</contributor><creatorcontrib>Briseid, Sverre ; Dokken, Tor ; Hagen, Trond Runar ; Nygaard, Jens Olav ; Alexandrov, Vassil N. ; Dongarra, Jack ; van Albada, Geert Dick ; Sloot, Peter M. A.</creatorcontrib><description>A commodity-type graphics card with its graphics processing unit (GPU) is used to detect, compute and visualize the intersection of two spline surfaces, or the self-intersection of a single spline surface. The parallelism of the GPU facilitates fast and efficient subdivision and bounding box testing of smaller spline patches and their corresponding normal subpatches. This subdivision and testing is iterated until a prescribed level of accuracy is reached, after which results are returned to the main computer. We observe speedups up to 17 times relative to a contemporary 64 bit CPU.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540343851</identifier><identifier>ISBN: 3540343857</identifier><identifier>ISBN: 3540343792</identifier><identifier>ISBN: 9783540343790</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540343868</identifier><identifier>EISBN: 3540343865</identifier><identifier>DOI: 10.1007/11758549_32</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Degree ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Degenerate Normal ; Exact sciences and technology ; Intersection Algorithm ; Intersection Curve ; Pattern recognition. Digital image processing. Computational geometry ; Spline Surface</subject><ispartof>Computational Science – ICCS 2006, 2006, p.204-211</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11758549_32$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11758549_32$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19969447$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Alexandrov, Vassil N.</contributor><contributor>Dongarra, Jack</contributor><contributor>van Albada, Geert Dick</contributor><contributor>Sloot, Peter M. A.</contributor><creatorcontrib>Briseid, Sverre</creatorcontrib><creatorcontrib>Dokken, Tor</creatorcontrib><creatorcontrib>Hagen, Trond Runar</creatorcontrib><creatorcontrib>Nygaard, Jens Olav</creatorcontrib><title>Spline Surface Intersections Optimized for GPUs</title><title>Computational Science – ICCS 2006</title><description>A commodity-type graphics card with its graphics processing unit (GPU) is used to detect, compute and visualize the intersection of two spline surfaces, or the self-intersection of a single spline surface. The parallelism of the GPU facilitates fast and efficient subdivision and bounding box testing of smaller spline patches and their corresponding normal subpatches. This subdivision and testing is iterated until a prescribed level of accuracy is reached, after which results are returned to the main computer. We observe speedups up to 17 times relative to a contemporary 64 bit CPU.</description><subject>Algebraic Degree</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Degenerate Normal</subject><subject>Exact sciences and technology</subject><subject>Intersection Algorithm</subject><subject>Intersection Curve</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Spline Surface</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540343851</isbn><isbn>3540343857</isbn><isbn>3540343792</isbn><isbn>9783540343790</isbn><isbn>9783540343868</isbn><isbn>3540343865</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkL1OwzAYRc2fRFUy8QJZGBhC_fnfI6qgVKpUpNLZst0vKNAmkR0GeHqCygB3ucM9usMh5BroHVCqZwBaGims4-yEFFYbLgXlghtlTskEFEDFubBn_zYJ52RCOWWV1YJfkiLnNzqGgzKMTchs0--bFsvNR6p9xHLZDpgyxqHp2lyu-6E5NF-4K-sulYvnbb4iF7XfZyx-e0q2jw8v86dqtV4s5_erqmdgh8pGsZMYAgRJDRNSKVl7BM0wUgAJ3ECMFnbRs2CRogwopPZWBSY8Ms-n5Ob42_sc_b5Ovo1Ndn1qDj59OrBWWSH0yN0euTxO7SsmF7ruPTug7kea-yONfwNFaVe8</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Briseid, Sverre</creator><creator>Dokken, Tor</creator><creator>Hagen, Trond Runar</creator><creator>Nygaard, Jens Olav</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Spline Surface Intersections Optimized for GPUs</title><author>Briseid, Sverre ; Dokken, Tor ; Hagen, Trond Runar ; Nygaard, Jens Olav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-9c4d5ebb1b508245665fae172ec01151381cc91dca2b9e0e5be457a96b24ae2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebraic Degree</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Degenerate Normal</topic><topic>Exact sciences and technology</topic><topic>Intersection Algorithm</topic><topic>Intersection Curve</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Spline Surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Briseid, Sverre</creatorcontrib><creatorcontrib>Dokken, Tor</creatorcontrib><creatorcontrib>Hagen, Trond Runar</creatorcontrib><creatorcontrib>Nygaard, Jens Olav</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Briseid, Sverre</au><au>Dokken, Tor</au><au>Hagen, Trond Runar</au><au>Nygaard, Jens Olav</au><au>Alexandrov, Vassil N.</au><au>Dongarra, Jack</au><au>van Albada, Geert Dick</au><au>Sloot, Peter M. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spline Surface Intersections Optimized for GPUs</atitle><btitle>Computational Science – ICCS 2006</btitle><date>2006</date><risdate>2006</risdate><spage>204</spage><epage>211</epage><pages>204-211</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540343851</isbn><isbn>3540343857</isbn><isbn>3540343792</isbn><isbn>9783540343790</isbn><eisbn>9783540343868</eisbn><eisbn>3540343865</eisbn><abstract>A commodity-type graphics card with its graphics processing unit (GPU) is used to detect, compute and visualize the intersection of two spline surfaces, or the self-intersection of a single spline surface. The parallelism of the GPU facilitates fast and efficient subdivision and bounding box testing of smaller spline patches and their corresponding normal subpatches. This subdivision and testing is iterated until a prescribed level of accuracy is reached, after which results are returned to the main computer. We observe speedups up to 17 times relative to a contemporary 64 bit CPU.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11758549_32</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Science – ICCS 2006, 2006, p.204-211
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19969447
source Springer Books
subjects Algebraic Degree
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Degenerate Normal
Exact sciences and technology
Intersection Algorithm
Intersection Curve
Pattern recognition. Digital image processing. Computational geometry
Spline Surface
title Spline Surface Intersections Optimized for GPUs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spline%20Surface%20Intersections%20Optimized%20for%20GPUs&rft.btitle=Computational%20Science%20%E2%80%93%20ICCS%202006&rft.au=Briseid,%20Sverre&rft.date=2006&rft.spage=204&rft.epage=211&rft.pages=204-211&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540343851&rft.isbn_list=3540343857&rft.isbn_list=3540343792&rft.isbn_list=9783540343790&rft_id=info:doi/10.1007/11758549_32&rft_dat=%3Cpascalfrancis_sprin%3E19969447%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540343868&rft.eisbn_list=3540343865&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true