Implementable Adaptive Backstepping Neural Control of Uncertain Strict-Feedback Nonlinear Systems

Presented in this paper is neural network based adaptive control for a class of affine nonlinear systems in the strict-feedback form with unknown nonlinearities. A popular recursive design methodology – backstepping is employed to systematically construct feedback control laws and associated Lyapuno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Dingguo, Yang, Jiaben
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Presented in this paper is neural network based adaptive control for a class of affine nonlinear systems in the strict-feedback form with unknown nonlinearities. A popular recursive design methodology – backstepping is employed to systematically construct feedback control laws and associated Lyapunov functions. The significance of this paper is to make best use of available signals, avoid unnecessary parameterization, and minimize the node number of neural networks as on-line approximators. The design assures that all the signals in the closed loop are semi-globally uniformly, ultimately bounded and the outputs of the system converges to a tunable small neighborhood of the desired trajectory. Novel parameter tuning algorithms are obtained on a more practical basis.
ISSN:0302-9743
1611-3349
DOI:10.1007/11760023_129