Multimodal Priority Verification of Face and Speech Using Momentum Back-Propagation Neural Network

In this paper, we propose a priority verification method for multimodal biometric features by using a momentum back-propagation artificial neural network (MBP-ANN). We also propose a personal verification method using both face and speech to improve the rate of single biometric verification. False a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Park, Changhan, Ki, Myungseok, Namkung, Jaechan, Paik, Joonki
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a priority verification method for multimodal biometric features by using a momentum back-propagation artificial neural network (MBP-ANN). We also propose a personal verification method using both face and speech to improve the rate of single biometric verification. False acceptance rate (FAR) and false rejection rate (FRR) have been a fundamental bottleneck of real-time personal verification. The proposed multimodal biometric method is to improve both verification rate and reliability in real-time by overcoming technical limitations of single biometric verification methods. The proposed method uses principal component analysis (PCA) for face recognition and hidden markov model (HMM) for speech recognition. It also uses MBP-ANN for the final decision of personal verification. Based on experimental results, the proposed system can reduce FAR down to 0.0001%, which proves that the proposed method overcomes the limitation of single biometric system and proves stable personal verification in real-time.
ISSN:0302-9743
1611-3349
DOI:10.1007/11760023_22