A Boolean Encoding Including SAT and n-ary CSPs
We investigate in this work a generalization of the known CNF representation which allows an efficient Boolean encoding for n-ary CSPs. We show that the space complexity of the Boolean encoding is identical to the one of the classical CSP representation and introduce a new inference rule whose appli...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate in this work a generalization of the known CNF representation which allows an efficient Boolean encoding for n-ary CSPs. We show that the space complexity of the Boolean encoding is identical to the one of the classical CSP representation and introduce a new inference rule whose application until saturation achieves arc-consistency in a linear time complexity for n-ary CSPs expressed in the Boolean encoding. Two enumerative methods for the Boolean encoding are studied: the first one (equivalent to MAC in CSPs) maintains full arc-consistency on each node of the search tree while the second (equivalent to FC in CSPs) performs partial arc-consistency on each node. Both methods are experimented and compared on some instances of the Ramsey problem and randomly generated 3-ary CSPs and promising results are obtained. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11861461_6 |