Exploring the Regular Tree Types

In this paper we use the Epigram language to define the universe of regular tree types—closed under empty, unit, sum, product and least fixpoint. We then present a generic decision procedure for Epigram’s in-built equality at each type, taking a complementary approach to that of Benke, Dybjer and Ja...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Morris, Peter, Altenkirch, Thorsten, McBride, Conor
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we use the Epigram language to define the universe of regular tree types—closed under empty, unit, sum, product and least fixpoint. We then present a generic decision procedure for Epigram’s in-built equality at each type, taking a complementary approach to that of Benke, Dybjer and Jansson [7]. We also give a generic definition of map, taking our inspiration from Jansson and Jeuring [21]. Finally, we equip the regular universe with the partial derivative which can be interpreted functionally as Huet’s notion of ‘zipper’, as suggested by McBride in [27] and implemented (without the fixpoint case) in Generic Haskell by Hinze, Jeuring and Löh [18]. We aim to show through these examples that generic programming can be ordinary programming in a dependently typed language.
ISSN:0302-9743
1611-3349
DOI:10.1007/11617990_16