Energy-Based Clustering of Graphs with Nonuniform Degrees

Widely varying node degrees occur in software dependency graphs, hyperlink structures, social networks, and many other real-world graphs. Finding dense subgraphs in such graphs is of great practical interest, as these clusters may correspond to cohesive software modules, semantically related documen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Noack, Andreas
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue
container_start_page 309
container_title
container_volume
creator Noack, Andreas
description Widely varying node degrees occur in software dependency graphs, hyperlink structures, social networks, and many other real-world graphs. Finding dense subgraphs in such graphs is of great practical interest, as these clusters may correspond to cohesive software modules, semantically related documents, and groups of friends or collaborators. Many existing clustering criteria and energy models are biased towards clustering together nodes with high degrees. In this paper, we introduce a clustering criterion based on normalizing cuts with edge numbers (instead of node numbers), and a corresponding energy model based on edge repulsion (instead of node repulsion) that reveal clusters without this bias.
doi_str_mv 10.1007/11618058_28
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19937734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19937734</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-1bb5cbeea31546c0db0c3aadf5b2047b0bbdd9fd3919f1bf43f5d816429b5b563</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRCmd-ANZGBgCfvP6Ix6hlIJUwQKzZcd2GmiTyG5V9d-TqgzccsM9OumOkBug90CpfAAQUFJe6qI8IVfIGUUQQsIpGQ0J5IhMnZGJkuUxYwWX52REkRa5kgwvySSlbzoIQSqpRkTNWh_rff5kknfZdLVNGx-bts66kM2j6Zcp2zWbZfbetdu2CV1cZ8--jt6na3IRzCr5yZ-PydfL7HP6mi8-5m_Tx0XeF1xscrCWV9Z7g8CZqKiztEJjXOC2oExaaq1zKjhUoALYwDBwV4JghbLccoFjcnvs7U2qzCpE01ZN0n1s1ibuNSiFUiIbuLsjl_rDAB-17bqfpIHqw3f633f4C-DXW2s</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Energy-Based Clustering of Graphs with Nonuniform Degrees</title><source>Springer Books</source><creator>Noack, Andreas</creator><contributor>Nikolov, Nikola S. ; Healy, Patrick</contributor><creatorcontrib>Noack, Andreas ; Nikolov, Nikola S. ; Healy, Patrick</creatorcontrib><description>Widely varying node degrees occur in software dependency graphs, hyperlink structures, social networks, and many other real-world graphs. Finding dense subgraphs in such graphs is of great practical interest, as these clusters may correspond to cohesive software modules, semantically related documents, and groups of friends or collaborators. Many existing clustering criteria and energy models are biased towards clustering together nodes with high degrees. In this paper, we introduce a clustering criterion based on normalizing cuts with edge numbers (instead of node numbers), and a corresponding energy model based on edge repulsion (instead of node repulsion) that reveal clusters without this bias.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540314257</identifier><identifier>ISBN: 3540314253</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316671</identifier><identifier>EISBN: 9783540316671</identifier><identifier>DOI: 10.1007/11618058_28</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Cluster Criterion ; Computer science; control theory; systems ; Energy Model ; Exact sciences and technology ; Graph Cluster ; Information retrieval. Graph ; Information systems. Data bases ; Large Graph ; Memory organisation. Data processing ; Node Versus ; Software ; Theoretical computing</subject><ispartof>Graph Drawing, 2006, p.309-320</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11618058_28$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11618058_28$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19937734$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Nikolov, Nikola S.</contributor><contributor>Healy, Patrick</contributor><creatorcontrib>Noack, Andreas</creatorcontrib><title>Energy-Based Clustering of Graphs with Nonuniform Degrees</title><title>Graph Drawing</title><description>Widely varying node degrees occur in software dependency graphs, hyperlink structures, social networks, and many other real-world graphs. Finding dense subgraphs in such graphs is of great practical interest, as these clusters may correspond to cohesive software modules, semantically related documents, and groups of friends or collaborators. Many existing clustering criteria and energy models are biased towards clustering together nodes with high degrees. In this paper, we introduce a clustering criterion based on normalizing cuts with edge numbers (instead of node numbers), and a corresponding energy model based on edge repulsion (instead of node repulsion) that reveal clusters without this bias.</description><subject>Applied sciences</subject><subject>Cluster Criterion</subject><subject>Computer science; control theory; systems</subject><subject>Energy Model</subject><subject>Exact sciences and technology</subject><subject>Graph Cluster</subject><subject>Information retrieval. Graph</subject><subject>Information systems. Data bases</subject><subject>Large Graph</subject><subject>Memory organisation. Data processing</subject><subject>Node Versus</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540314257</isbn><isbn>3540314253</isbn><isbn>3540316671</isbn><isbn>9783540316671</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkD1PwzAYhM2XRCmd-ANZGBgCfvP6Ix6hlIJUwQKzZcd2GmiTyG5V9d-TqgzccsM9OumOkBug90CpfAAQUFJe6qI8IVfIGUUQQsIpGQ0J5IhMnZGJkuUxYwWX52REkRa5kgwvySSlbzoIQSqpRkTNWh_rff5kknfZdLVNGx-bts66kM2j6Zcp2zWbZfbetdu2CV1cZ8--jt6na3IRzCr5yZ-PydfL7HP6mi8-5m_Tx0XeF1xscrCWV9Z7g8CZqKiztEJjXOC2oExaaq1zKjhUoALYwDBwV4JghbLccoFjcnvs7U2qzCpE01ZN0n1s1ibuNSiFUiIbuLsjl_rDAB-17bqfpIHqw3f633f4C-DXW2s</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Noack, Andreas</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Energy-Based Clustering of Graphs with Nonuniform Degrees</title><author>Noack, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-1bb5cbeea31546c0db0c3aadf5b2047b0bbdd9fd3919f1bf43f5d816429b5b563</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Cluster Criterion</topic><topic>Computer science; control theory; systems</topic><topic>Energy Model</topic><topic>Exact sciences and technology</topic><topic>Graph Cluster</topic><topic>Information retrieval. Graph</topic><topic>Information systems. Data bases</topic><topic>Large Graph</topic><topic>Memory organisation. Data processing</topic><topic>Node Versus</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noack, Andreas</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noack, Andreas</au><au>Nikolov, Nikola S.</au><au>Healy, Patrick</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Energy-Based Clustering of Graphs with Nonuniform Degrees</atitle><btitle>Graph Drawing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>309</spage><epage>320</epage><pages>309-320</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540314257</isbn><isbn>3540314253</isbn><eisbn>3540316671</eisbn><eisbn>9783540316671</eisbn><abstract>Widely varying node degrees occur in software dependency graphs, hyperlink structures, social networks, and many other real-world graphs. Finding dense subgraphs in such graphs is of great practical interest, as these clusters may correspond to cohesive software modules, semantically related documents, and groups of friends or collaborators. Many existing clustering criteria and energy models are biased towards clustering together nodes with high degrees. In this paper, we introduce a clustering criterion based on normalizing cuts with edge numbers (instead of node numbers), and a corresponding energy model based on edge repulsion (instead of node repulsion) that reveal clusters without this bias.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11618058_28</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Graph Drawing, 2006, p.309-320
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19937734
source Springer Books
subjects Applied sciences
Cluster Criterion
Computer science
control theory
systems
Energy Model
Exact sciences and technology
Graph Cluster
Information retrieval. Graph
Information systems. Data bases
Large Graph
Memory organisation. Data processing
Node Versus
Software
Theoretical computing
title Energy-Based Clustering of Graphs with Nonuniform Degrees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Energy-Based%20Clustering%20of%20Graphs%20with%20Nonuniform%20Degrees&rft.btitle=Graph%20Drawing&rft.au=Noack,%20Andreas&rft.date=2006&rft.spage=309&rft.epage=320&rft.pages=309-320&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540314257&rft.isbn_list=3540314253&rft_id=info:doi/10.1007/11618058_28&rft_dat=%3Cpascalfrancis_sprin%3E19937734%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316671&rft.eisbn_list=9783540316671&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true