Energy-Based Clustering of Graphs with Nonuniform Degrees

Widely varying node degrees occur in software dependency graphs, hyperlink structures, social networks, and many other real-world graphs. Finding dense subgraphs in such graphs is of great practical interest, as these clusters may correspond to cohesive software modules, semantically related documen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Noack, Andreas
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Widely varying node degrees occur in software dependency graphs, hyperlink structures, social networks, and many other real-world graphs. Finding dense subgraphs in such graphs is of great practical interest, as these clusters may correspond to cohesive software modules, semantically related documents, and groups of friends or collaborators. Many existing clustering criteria and energy models are biased towards clustering together nodes with high degrees. In this paper, we introduce a clustering criterion based on normalizing cuts with edge numbers (instead of node numbers), and a corresponding energy model based on edge repulsion (instead of node repulsion) that reveal clusters without this bias.
ISSN:0302-9743
1611-3349
DOI:10.1007/11618058_28