Morphing Planar Graphs While Preserving Edge Directions
Two straight-line drawings P,Q of a graph (V,E) are called parallel if, for every edge (u,v) ∈ E, the vector from u to v has the same direction in both P and Q. We study problems of the form: given simple, parallel drawings P,Q does there exist a continuous transformation between them such that inte...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two straight-line drawings P,Q of a graph (V,E) are called parallel if, for every edge (u,v) ∈ E, the vector from u to v has the same direction in both P and Q. We study problems of the form: given simple, parallel drawings P,Q does there exist a continuous transformation between them such that intermediate drawings of the transformation remain simple and parallel with P (and Q)? We prove that a transformation can always be found in the case of orthogonal drawings; however, when edges are allowed to be in one of three or more slopes the problem becomes NP-hard. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11618058_2 |