Quantales and Temporal Logics

We propose an algebraic semantics for the temporal logic CTL* and simplify it for its sublogics CTL and LTL. We abstractly represent state and path formulas over transition systems in Boolean left quantales. These are complete lattices with a multiplication that preserves arbitrary joins in its left...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Möller, Bernhard, Höfner, Peter, Struth, Georg
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an algebraic semantics for the temporal logic CTL* and simplify it for its sublogics CTL and LTL. We abstractly represent state and path formulas over transition systems in Boolean left quantales. These are complete lattices with a multiplication that preserves arbitrary joins in its left argument and is isotone in its right argument. Over these quantales, the semantics of CTL* formulas can be encoded via finite and infinite iteration operators; the CTL and LTL operators can be related to domain operators. This yields interesting new connections between representations as known from the modal μ-calculus and Kleene/ω-algebra.
ISSN:0302-9743
1611-3349
DOI:10.1007/11784180_21