Independent Vector Analysis: An Extension of ICA to Multivariate Components

In this paper, we solve an ICA problem where both source and observation signals are multivariate, thus, vectorized signals. To derive the algorithm, we define dependence between vectors as Kullback-Leibler divergence between joint probability and the product of marginal probabilities, and propose a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kim, Taesu, Eltoft, Torbjørn, Lee, Te-Won
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we solve an ICA problem where both source and observation signals are multivariate, thus, vectorized signals. To derive the algorithm, we define dependence between vectors as Kullback-Leibler divergence between joint probability and the product of marginal probabilities, and propose a vector density model that has a variance dependency within a source vector. The example shows that the algorithm successfully recovers the sources and it does not cause any permutation ambiguities within the sources. Finally, we propose the frequency domain blind source separation (BSS) for convolutive mixtures as an application of IVA, which separates 6 speeches with 6 microphones in a reverberant room environment.
ISSN:0302-9743
1611-3349
DOI:10.1007/11679363_21