Focused 70-cm Wavelength Radar Mapping of the Moon

We describe new 70-cm wavelength radar images of the lunar near-side and limb regions obtained via a synthetic-aperture-radar patch-focusing reduction technique. The data are obtained by transmitting a circularly polarized pulsed waveform from the Arecibo telescope in Puerto Rico and receiving the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2007-12, Vol.45 (12), p.4032-4042
Hauptverfasser: Campbell, B.A., Campbell, D.B., Margot, J.L., Ghent, R.R., Nolan, M., Chandler, J., Carter, L.M., Stacy, N.J.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe new 70-cm wavelength radar images of the lunar near-side and limb regions obtained via a synthetic-aperture-radar patch-focusing reduction technique. The data are obtained by transmitting a circularly polarized pulsed waveform from the Arecibo telescope in Puerto Rico and receiving the echo in both senses of circular polarization with the Robert C. Byrd Green Bank Telescope in West Virginia. The resultant images in both polarizations have a spatial resolution as fine as 320 m 450 m near the lunar limb. The patch-focusing technique is a computationally efficient method for compensating for range migration and Doppler (azimuth) smearing over long coherence times, i.e., 983 s, which is needed to achieve the required Doppler resolution. Three to nine looks are averaged for speckle reduction and to improve the signal-to-noise ratio. At this long wavelength, the radar signal penetrates up to several tens of meters into the dry lunar surface materials, thus revealing details of the bulk loss properties and decimeter-scale rock abundance not evident in multispectral and other remote-sensing data. Application of the new radar images to the analysis of basalt flow complexes in Mare Serenitatis shows that the long-wavelength radar data are sensitive to differences in both flow age and composition, and may be particularly useful for studies of smaller deposits that do not have robust crater statistics. The new 70-cm lunar radar data are archived at the National Aeronautics and Space Administration Planetary Data System.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2007.906582