Effect of pO2 on the formation and status of leghemoglobin in nodules of cowpea and soybean

Nodulated cowpea (Vigna unguiculata [L.] Walp. cv Vita 3: Bradyrhizobium strain CB756) and soybean (Glycine max [L.] Merr. cv White Eye: Bradyrhizobium strain CB1809) were grown with their root systems maintained in a flowing gas stream containing a range of pO2 (1-80%, v/v) in N2 for up to 28 days...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1991-03, Vol.95 (3), p.723-730
Hauptverfasser: Dakora, F.D. (University of California, Davis, CA), Appleby, C.A, Atkins, C.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nodulated cowpea (Vigna unguiculata [L.] Walp. cv Vita 3: Bradyrhizobium strain CB756) and soybean (Glycine max [L.] Merr. cv White Eye: Bradyrhizobium strain CB1809) were grown with their root systems maintained in a flowing gas stream containing a range of pO2 (1-80%, v/v) in N2 for up to 28 days after planting. At the extremes of sub- and supra-ambient pO2, the levels of leghemoglobin (Lb) in nodules were reduced. However, neither the proportional composition of Lb component proteins (eight in soybean, three in cowpea) nor their oxidation state was affected by pO2. Short-term changes in pO2 (transferring plants grown with sub- or supra-ambient pO2 in the rhizosphere to air or vice versa) caused a significant decline in Lb content and, in cowpea but not soybean, where pO2 was increased, a higher percentage of oxidation of Lb. Combining data on changes in Lb level of cowpea nodules grown in sub-ambient pO2 With those for their structural adaptation to an under supply of O2 indicated that, despite the nodules having a lower level of Lb, the amount per infected cell was increased by up to twofold and per bacteroid up to fivefold (in those from 1% O2) compared to those grown in air. Progressive decline in pO2 resulted in a progressive increase on this basis, indicating a close relationship between Lb content and the adaptation of nodule functioning to external O2 level
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.95.3.723