Resonator surface contamination-a cause of frequency fluctuations?

The mass loading effects of adsorbing and desorbing contaminant molecules on the magnitude and characteristics of frequency fluctuations in a thickness-shear resonator are studied. The study is motivated by the observation that the frequency of a thickness-shear resonator is determined predominantly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1989-07, Vol.36 (4), p.452-458
Hauptverfasser: Yong, Y.K., Vig, J.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mass loading effects of adsorbing and desorbing contaminant molecules on the magnitude and characteristics of frequency fluctuations in a thickness-shear resonator are studied. The study is motivated by the observation that the frequency of a thickness-shear resonator is determined predominantly by such mechanical parameters as the thickness of the resonator, elastic stiffnesses, mass loading of the electrodes, and energy trapping. An equation was derived relating the spectral density of frequency fluctuations to: (1) rates of adsorption and desorption of one species of contaminant molecules; (2) mass per unit area of a monolayer of molecules: (3) frequency constant; (4) thickness of resonator; and (5) number of molecular sites on one resonator surface. The induced phase noises were found to be significant in very-high-frequency resonators and are not simple functions of the percentage of area contaminated. The spectral density of frequency fluctuations was inversely proportional to the fourth power of the thickness if other parameters were held constant.< >
ISSN:0885-3010
1525-8955
DOI:10.1109/58.31783