An Algebraic Masking Method to Protect AES Against Power Attacks

The central question in constructing a secure and efficient masking method for AES is to address the interaction between additive masking and the inverse S-box of Rijndael. All recently proposed methods to protect AES against power attacks try to avoid this problem and work by decomposing the invers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Courtois, Nicolas T., Goubin, Louis
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The central question in constructing a secure and efficient masking method for AES is to address the interaction between additive masking and the inverse S-box of Rijndael. All recently proposed methods to protect AES against power attacks try to avoid this problem and work by decomposing the inverse in terms of simpler operations that are more easily protected against DPA by generic methods. In this paper, for the first time, we look at the problem in the face, and show that this interaction is not as intricate as it seems. In fact, any operation, even complex, can be directly protected against DPA of any given order, if it can be embedded in a group that has a compact representation. We show that a secure computation of a whole masked inverse can be done directly in this way, using the group of homographic transformations over the projective space (but not exactly, with some non-trivial technicalities).
ISSN:0302-9743
1611-3349
DOI:10.1007/11734727_18