The Committee Decision Problem

We introduce the (b,n)-Committee Decision Problem (CD) – a generalization of the consensus problem. While set agreement generalizes consensus in terms of the number of decisions allowed, the CD problem generalizes consensus in the sense of considering many instances of consensus and requiring a proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gafni, Eli, Rajsbaum, Sergio, Raynal, Michel, Travers, Corentin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the (b,n)-Committee Decision Problem (CD) – a generalization of the consensus problem. While set agreement generalizes consensus in terms of the number of decisions allowed, the CD problem generalizes consensus in the sense of considering many instances of consensus and requiring a processor to decide in at least one instance. In more detail, in the CD problem each one of a set of n processes has a (possibly distinct) value to propose to each one of a set of b consensus problems, which we call committees. Yet a process has to decide a value for at least one of these committees, such that all processes deciding for the same committee decide the same value. We study the CD problem in the context of a wait-free distributed system and analyze it using a combination of distributed algorithmic and topological techniques, introducing a novel reduction technique. We use the reduction technique to obtain the following results. We show that the (2,3)-CD problem is equivalent to the musical benches problem introduced by Gafni and Rajsbaum in [10], and both are equivalent to (2,3)-set agreement, closing an open question left there. Thus, all three problems are wait-free unsolvable in a read/write shared memory system, and they are all solvable if the system is enriched with objects capable of solving (2,3)-set agreement. While the previous proof of the impossibility of musical benches was based on the Borsuk-Ulam (BU) Theorem, it now relies on Sperner’s Lemma, opening intriguing questions about the relation between BU and distributed computing tasks.
ISSN:0302-9743
1611-3349
DOI:10.1007/11682462_47