Hardware/Software Co-design of Elliptic Curve Cryptography on an 8051 Microcontroller

8-bit microcontrollers like the 8051 still hold a considerable share of the embedded systems market and dominate in the smart card industry. The performance of 8-bit microcontrollers is often too poor for the implementation of public-key cryptography in software. In this paper we present a minimalis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koschuch, Manuel, Lechner, Joachim, Weitzer, Andreas, Großschädl, Johann, Szekely, Alexander, Tillich, Stefan, Wolkerstorfer, Johannes
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:8-bit microcontrollers like the 8051 still hold a considerable share of the embedded systems market and dominate in the smart card industry. The performance of 8-bit microcontrollers is often too poor for the implementation of public-key cryptography in software. In this paper we present a minimalist hardware accelerator for enabling elliptic curve cryptography (ECC) on an 8051 microcontroller. We demonstrate the importance of removing system-level performance bottlenecks caused by the transfer of operands between hardware accelerator and external RAM. The integration of a small direct memory access (DMA) unit proves vital to exploit the full potential of the hardware accelerator. Our design allows to perform a scalar multiplication over the binary extension field GF(2191) in 118 msec at a clock frequency of 12 MHz. Considering performance and hardware cost, our system compares favorably with previous work on similar 8-bit platforms.
ISSN:0302-9743
1611-3349
DOI:10.1007/11894063_34