Hardware/Software Co-design of Elliptic Curve Cryptography on an 8051 Microcontroller
8-bit microcontrollers like the 8051 still hold a considerable share of the embedded systems market and dominate in the smart card industry. The performance of 8-bit microcontrollers is often too poor for the implementation of public-key cryptography in software. In this paper we present a minimalis...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 8-bit microcontrollers like the 8051 still hold a considerable share of the embedded systems market and dominate in the smart card industry. The performance of 8-bit microcontrollers is often too poor for the implementation of public-key cryptography in software. In this paper we present a minimalist hardware accelerator for enabling elliptic curve cryptography (ECC) on an 8051 microcontroller. We demonstrate the importance of removing system-level performance bottlenecks caused by the transfer of operands between hardware accelerator and external RAM. The integration of a small direct memory access (DMA) unit proves vital to exploit the full potential of the hardware accelerator. Our design allows to perform a scalar multiplication over the binary extension field GF(2191) in 118 msec at a clock frequency of 12 MHz. Considering performance and hardware cost, our system compares favorably with previous work on similar 8-bit platforms. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11894063_34 |