Böhm Trees, Krivine’s Machine and the Taylor Expansion of Lambda-Terms

We introduce and study a version of Krivine’s machine which provides a precise information about how much of its argument is needed for performing a computation. This information is expressed as a term of a resource lambda-calculus introduced by the authors in a recent article; this calculus can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ehrhard, Thomas, Regnier, Laurent
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce and study a version of Krivine’s machine which provides a precise information about how much of its argument is needed for performing a computation. This information is expressed as a term of a resource lambda-calculus introduced by the authors in a recent article; this calculus can be seen as a fragment of the differential lambda-calculus. We use this machine to show that Taylor expansion of lambda-terms (an operation mapping lambda-terms to generally infinite linear combinations of resource lambda-terms) commutes with Böhm tree computation.
ISSN:0302-9743
1611-3349
DOI:10.1007/11780342_20