A Distance-Based Information Preservation Tree Crossover for the Maximum Parsimony Problem

The Maximum Parsimony problem aims at reconstructing a phylogenetic tree from DNA sequences while minimizing the number of evolutionary changes. Known to be NP-complete, the MP problem has many applications. This paper introduces a Distance-based Information Preservation (DiBIP) Tree Crossover. Cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Goëffon, Adrien, Richer, Jean-Michel, Hao, Jin-Kao
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Maximum Parsimony problem aims at reconstructing a phylogenetic tree from DNA sequences while minimizing the number of evolutionary changes. Known to be NP-complete, the MP problem has many applications. This paper introduces a Distance-based Information Preservation (DiBIP) Tree Crossover. Contrary to previous crossover operators, DiBIP uses a distance measure to characterize the semantic information of a phylogenetic tree and ensures the preservation of distance related properties between parents and offspring. The performance of DiBIP is assessed with a mimetic algorithm on a set of 28 benchmark instances from the literature. Comparisons with 3 state-of-the-art algorithms show very competitive results of the proposed approach with improvement of some previously best results found.
ISSN:0302-9743
1611-3349
DOI:10.1007/11844297_77