A Statistical Image Fusion Scheme for Multi Focus Applications
In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are ut...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1105 |
---|---|
container_issue | |
container_start_page | 1096 |
container_title | |
container_volume | |
creator | Liao, Z. W. Hu, S. X. Chen, W. F. Tang, Y. Y. Huang, T. Z. |
description | In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are utilized. Considering the shift-variance of wavelets, the merged image is obtained from the source images directly. The regions of each source image are obtained by the Hough transform (HT) and their ALM are decided by the ALM of their coefficients in HH according to MLK. Finally, two multi focus images are merged by our new framework. The fusion results show the high ability of our scheme in preserving edge information and avoiding shift-variant. |
doi_str_mv | 10.1007/11739685_115 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19686551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19686551</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-40a498c8835edaf6909b6a8ddb07e26725855a175948983ad9190442e792adaa3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhtcvsNbe_AF78SJEZ_Z7L0IpVgsVD9VzmCabGk2bkE0P_ntXquBc5vA-DO88jF0h3CKAvUO00hunc0R9xCbeOqkVSKmdNsdshAYxk1L5E3bxFyhzykYgQWTeKnnOJjF-QBqJBsCP2P2UrwYa6jjUBTV8saVN4PN9rNsdXxXvYRt41fb8ed8MNZ-3xT7yadc1CR4SEi_ZWUVNDJPfPWZv84fX2VO2fHlczKbLrBMChkwBKe8Kl_qGkirjwa8NubJcgw3CWJE-0IRWe-W8k1R69KCUCNYLKonkmF0f7nYUU8-qp11Rx7zr6y31XzkmK0ZrTNzNgYsp2m1Cn6_b9jPmCPmPwfy_QfkNca5bnw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Statistical Image Fusion Scheme for Multi Focus Applications</title><source>Springer Books</source><creator>Liao, Z. W. ; Hu, S. X. ; Chen, W. F. ; Tang, Y. Y. ; Huang, T. Z.</creator><contributor>Yan, Hong ; Yeung, Daniel S. ; Wang, Xi-Zhao ; Liu, Zhi-Qiang</contributor><creatorcontrib>Liao, Z. W. ; Hu, S. X. ; Chen, W. F. ; Tang, Y. Y. ; Huang, T. Z. ; Yan, Hong ; Yeung, Daniel S. ; Wang, Xi-Zhao ; Liu, Zhi-Qiang</creatorcontrib><description>In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are utilized. Considering the shift-variance of wavelets, the merged image is obtained from the source images directly. The regions of each source image are obtained by the Hough transform (HT) and their ALM are decided by the ALM of their coefficients in HH according to MLK. Finally, two multi focus images are merged by our new framework. The fusion results show the high ability of our scheme in preserving edge information and avoiding shift-variant.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540335846</identifier><identifier>ISBN: 9783540335849</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540335856</identifier><identifier>EISBN: 3540335854</identifier><identifier>DOI: 10.1007/11739685_115</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Hide Markov Model ; Hide State ; Image Fusion ; Multi Focus Image ; Pattern recognition. Digital image processing. Computational geometry ; Source Image</subject><ispartof>Advances in Machine Learning and Cybernetics, 2006, p.1096-1105</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11739685_115$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11739685_115$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19686551$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yan, Hong</contributor><contributor>Yeung, Daniel S.</contributor><contributor>Wang, Xi-Zhao</contributor><contributor>Liu, Zhi-Qiang</contributor><creatorcontrib>Liao, Z. W.</creatorcontrib><creatorcontrib>Hu, S. X.</creatorcontrib><creatorcontrib>Chen, W. F.</creatorcontrib><creatorcontrib>Tang, Y. Y.</creatorcontrib><creatorcontrib>Huang, T. Z.</creatorcontrib><title>A Statistical Image Fusion Scheme for Multi Focus Applications</title><title>Advances in Machine Learning and Cybernetics</title><description>In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are utilized. Considering the shift-variance of wavelets, the merged image is obtained from the source images directly. The regions of each source image are obtained by the Hough transform (HT) and their ALM are decided by the ALM of their coefficients in HH according to MLK. Finally, two multi focus images are merged by our new framework. The fusion results show the high ability of our scheme in preserving edge information and avoiding shift-variant.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Hide Markov Model</subject><subject>Hide State</subject><subject>Image Fusion</subject><subject>Multi Focus Image</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Source Image</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540335846</isbn><isbn>9783540335849</isbn><isbn>9783540335856</isbn><isbn>3540335854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1Lw0AQhtcvsNbe_AF78SJEZ_Z7L0IpVgsVD9VzmCabGk2bkE0P_ntXquBc5vA-DO88jF0h3CKAvUO00hunc0R9xCbeOqkVSKmdNsdshAYxk1L5E3bxFyhzykYgQWTeKnnOJjF-QBqJBsCP2P2UrwYa6jjUBTV8saVN4PN9rNsdXxXvYRt41fb8ed8MNZ-3xT7yadc1CR4SEi_ZWUVNDJPfPWZv84fX2VO2fHlczKbLrBMChkwBKe8Kl_qGkirjwa8NubJcgw3CWJE-0IRWe-W8k1R69KCUCNYLKonkmF0f7nYUU8-qp11Rx7zr6y31XzkmK0ZrTNzNgYsp2m1Cn6_b9jPmCPmPwfy_QfkNca5bnw</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Liao, Z. W.</creator><creator>Hu, S. X.</creator><creator>Chen, W. F.</creator><creator>Tang, Y. Y.</creator><creator>Huang, T. Z.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Statistical Image Fusion Scheme for Multi Focus Applications</title><author>Liao, Z. W. ; Hu, S. X. ; Chen, W. F. ; Tang, Y. Y. ; Huang, T. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-40a498c8835edaf6909b6a8ddb07e26725855a175948983ad9190442e792adaa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Hide Markov Model</topic><topic>Hide State</topic><topic>Image Fusion</topic><topic>Multi Focus Image</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Source Image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Z. W.</creatorcontrib><creatorcontrib>Hu, S. X.</creatorcontrib><creatorcontrib>Chen, W. F.</creatorcontrib><creatorcontrib>Tang, Y. Y.</creatorcontrib><creatorcontrib>Huang, T. Z.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Z. W.</au><au>Hu, S. X.</au><au>Chen, W. F.</au><au>Tang, Y. Y.</au><au>Huang, T. Z.</au><au>Yan, Hong</au><au>Yeung, Daniel S.</au><au>Wang, Xi-Zhao</au><au>Liu, Zhi-Qiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Statistical Image Fusion Scheme for Multi Focus Applications</atitle><btitle>Advances in Machine Learning and Cybernetics</btitle><date>2006</date><risdate>2006</risdate><spage>1096</spage><epage>1105</epage><pages>1096-1105</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540335846</isbn><isbn>9783540335849</isbn><eisbn>9783540335856</eisbn><eisbn>3540335854</eisbn><abstract>In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are utilized. Considering the shift-variance of wavelets, the merged image is obtained from the source images directly. The regions of each source image are obtained by the Hough transform (HT) and their ALM are decided by the ALM of their coefficients in HH according to MLK. Finally, two multi focus images are merged by our new framework. The fusion results show the high ability of our scheme in preserving edge information and avoiding shift-variant.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11739685_115</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Machine Learning and Cybernetics, 2006, p.1096-1105 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19686551 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Hide Markov Model Hide State Image Fusion Multi Focus Image Pattern recognition. Digital image processing. Computational geometry Source Image |
title | A Statistical Image Fusion Scheme for Multi Focus Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Statistical%20Image%20Fusion%20Scheme%20for%20Multi%20Focus%20Applications&rft.btitle=Advances%20in%20Machine%20Learning%20and%20Cybernetics&rft.au=Liao,%20Z.%20W.&rft.date=2006&rft.spage=1096&rft.epage=1105&rft.pages=1096-1105&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540335846&rft.isbn_list=9783540335849&rft_id=info:doi/10.1007/11739685_115&rft_dat=%3Cpascalfrancis_sprin%3E19686551%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540335856&rft.eisbn_list=3540335854&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |