A Statistical Image Fusion Scheme for Multi Focus Applications

In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are ut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liao, Z. W., Hu, S. X., Chen, W. F., Tang, Y. Y., Huang, T. Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue
container_start_page 1096
container_title
container_volume
creator Liao, Z. W.
Hu, S. X.
Chen, W. F.
Tang, Y. Y.
Huang, T. Z.
description In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are utilized. Considering the shift-variance of wavelets, the merged image is obtained from the source images directly. The regions of each source image are obtained by the Hough transform (HT) and their ALM are decided by the ALM of their coefficients in HH according to MLK. Finally, two multi focus images are merged by our new framework. The fusion results show the high ability of our scheme in preserving edge information and avoiding shift-variant.
doi_str_mv 10.1007/11739685_115
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19686551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19686551</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-40a498c8835edaf6909b6a8ddb07e26725855a175948983ad9190442e792adaa3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhtcvsNbe_AF78SJEZ_Z7L0IpVgsVD9VzmCabGk2bkE0P_ntXquBc5vA-DO88jF0h3CKAvUO00hunc0R9xCbeOqkVSKmdNsdshAYxk1L5E3bxFyhzykYgQWTeKnnOJjF-QBqJBsCP2P2UrwYa6jjUBTV8saVN4PN9rNsdXxXvYRt41fb8ed8MNZ-3xT7yadc1CR4SEi_ZWUVNDJPfPWZv84fX2VO2fHlczKbLrBMChkwBKe8Kl_qGkirjwa8NubJcgw3CWJE-0IRWe-W8k1R69KCUCNYLKonkmF0f7nYUU8-qp11Rx7zr6y31XzkmK0ZrTNzNgYsp2m1Cn6_b9jPmCPmPwfy_QfkNca5bnw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Statistical Image Fusion Scheme for Multi Focus Applications</title><source>Springer Books</source><creator>Liao, Z. W. ; Hu, S. X. ; Chen, W. F. ; Tang, Y. Y. ; Huang, T. Z.</creator><contributor>Yan, Hong ; Yeung, Daniel S. ; Wang, Xi-Zhao ; Liu, Zhi-Qiang</contributor><creatorcontrib>Liao, Z. W. ; Hu, S. X. ; Chen, W. F. ; Tang, Y. Y. ; Huang, T. Z. ; Yan, Hong ; Yeung, Daniel S. ; Wang, Xi-Zhao ; Liu, Zhi-Qiang</creatorcontrib><description>In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are utilized. Considering the shift-variance of wavelets, the merged image is obtained from the source images directly. The regions of each source image are obtained by the Hough transform (HT) and their ALM are decided by the ALM of their coefficients in HH according to MLK. Finally, two multi focus images are merged by our new framework. The fusion results show the high ability of our scheme in preserving edge information and avoiding shift-variant.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540335846</identifier><identifier>ISBN: 9783540335849</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540335856</identifier><identifier>EISBN: 3540335854</identifier><identifier>DOI: 10.1007/11739685_115</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Hide Markov Model ; Hide State ; Image Fusion ; Multi Focus Image ; Pattern recognition. Digital image processing. Computational geometry ; Source Image</subject><ispartof>Advances in Machine Learning and Cybernetics, 2006, p.1096-1105</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11739685_115$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11739685_115$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19686551$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yan, Hong</contributor><contributor>Yeung, Daniel S.</contributor><contributor>Wang, Xi-Zhao</contributor><contributor>Liu, Zhi-Qiang</contributor><creatorcontrib>Liao, Z. W.</creatorcontrib><creatorcontrib>Hu, S. X.</creatorcontrib><creatorcontrib>Chen, W. F.</creatorcontrib><creatorcontrib>Tang, Y. Y.</creatorcontrib><creatorcontrib>Huang, T. Z.</creatorcontrib><title>A Statistical Image Fusion Scheme for Multi Focus Applications</title><title>Advances in Machine Learning and Cybernetics</title><description>In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are utilized. Considering the shift-variance of wavelets, the merged image is obtained from the source images directly. The regions of each source image are obtained by the Hough transform (HT) and their ALM are decided by the ALM of their coefficients in HH according to MLK. Finally, two multi focus images are merged by our new framework. The fusion results show the high ability of our scheme in preserving edge information and avoiding shift-variant.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Hide Markov Model</subject><subject>Hide State</subject><subject>Image Fusion</subject><subject>Multi Focus Image</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Source Image</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540335846</isbn><isbn>9783540335849</isbn><isbn>9783540335856</isbn><isbn>3540335854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1Lw0AQhtcvsNbe_AF78SJEZ_Z7L0IpVgsVD9VzmCabGk2bkE0P_ntXquBc5vA-DO88jF0h3CKAvUO00hunc0R9xCbeOqkVSKmdNsdshAYxk1L5E3bxFyhzykYgQWTeKnnOJjF-QBqJBsCP2P2UrwYa6jjUBTV8saVN4PN9rNsdXxXvYRt41fb8ed8MNZ-3xT7yadc1CR4SEi_ZWUVNDJPfPWZv84fX2VO2fHlczKbLrBMChkwBKe8Kl_qGkirjwa8NubJcgw3CWJE-0IRWe-W8k1R69KCUCNYLKonkmF0f7nYUU8-qp11Rx7zr6y31XzkmK0ZrTNzNgYsp2m1Cn6_b9jPmCPmPwfy_QfkNca5bnw</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Liao, Z. W.</creator><creator>Hu, S. X.</creator><creator>Chen, W. F.</creator><creator>Tang, Y. Y.</creator><creator>Huang, T. Z.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Statistical Image Fusion Scheme for Multi Focus Applications</title><author>Liao, Z. W. ; Hu, S. X. ; Chen, W. F. ; Tang, Y. Y. ; Huang, T. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-40a498c8835edaf6909b6a8ddb07e26725855a175948983ad9190442e792adaa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Hide Markov Model</topic><topic>Hide State</topic><topic>Image Fusion</topic><topic>Multi Focus Image</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Source Image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Z. W.</creatorcontrib><creatorcontrib>Hu, S. X.</creatorcontrib><creatorcontrib>Chen, W. F.</creatorcontrib><creatorcontrib>Tang, Y. Y.</creatorcontrib><creatorcontrib>Huang, T. Z.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Z. W.</au><au>Hu, S. X.</au><au>Chen, W. F.</au><au>Tang, Y. Y.</au><au>Huang, T. Z.</au><au>Yan, Hong</au><au>Yeung, Daniel S.</au><au>Wang, Xi-Zhao</au><au>Liu, Zhi-Qiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Statistical Image Fusion Scheme for Multi Focus Applications</atitle><btitle>Advances in Machine Learning and Cybernetics</btitle><date>2006</date><risdate>2006</risdate><spage>1096</spage><epage>1105</epage><pages>1096-1105</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540335846</isbn><isbn>9783540335849</isbn><eisbn>9783540335856</eisbn><eisbn>3540335854</eisbn><abstract>In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are utilized. Considering the shift-variance of wavelets, the merged image is obtained from the source images directly. The regions of each source image are obtained by the Hough transform (HT) and their ALM are decided by the ALM of their coefficients in HH according to MLK. Finally, two multi focus images are merged by our new framework. The fusion results show the high ability of our scheme in preserving edge information and avoiding shift-variant.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11739685_115</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Machine Learning and Cybernetics, 2006, p.1096-1105
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19686551
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Hide Markov Model
Hide State
Image Fusion
Multi Focus Image
Pattern recognition. Digital image processing. Computational geometry
Source Image
title A Statistical Image Fusion Scheme for Multi Focus Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Statistical%20Image%20Fusion%20Scheme%20for%20Multi%20Focus%20Applications&rft.btitle=Advances%20in%20Machine%20Learning%20and%20Cybernetics&rft.au=Liao,%20Z.%20W.&rft.date=2006&rft.spage=1096&rft.epage=1105&rft.pages=1096-1105&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540335846&rft.isbn_list=9783540335849&rft_id=info:doi/10.1007/11739685_115&rft_dat=%3Cpascalfrancis_sprin%3E19686551%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540335856&rft.eisbn_list=3540335854&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true