A Statistical Image Fusion Scheme for Multi Focus Applications

In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are ut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liao, Z. W., Hu, S. X., Chen, W. F., Tang, Y. Y., Huang, T. Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a statistical scheme to judge the activity level measurement (ALM) that is based on wavelet-domain hidden Markov model (WD-HMM) and maximum likelihood (MLK). The source images are firstly decomposed by the wavelets and only the coefficients in the high frequency (HH) are utilized. Considering the shift-variance of wavelets, the merged image is obtained from the source images directly. The regions of each source image are obtained by the Hough transform (HT) and their ALM are decided by the ALM of their coefficients in HH according to MLK. Finally, two multi focus images are merged by our new framework. The fusion results show the high ability of our scheme in preserving edge information and avoiding shift-variant.
ISSN:0302-9743
1611-3349
DOI:10.1007/11739685_115