Adaptive Online Multi-stroke Sketch Recognition Based on Hidden Markov Model
This paper presents a novel approach for adaptive online multi-stroke sketch recognition based on Hidden Markov Model (HMM). The method views the drawing sketch as the result of a stochastic process that is governed by a hidden stochastic model and identified according to its probability of generati...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel approach for adaptive online multi-stroke sketch recognition based on Hidden Markov Model (HMM). The method views the drawing sketch as the result of a stochastic process that is governed by a hidden stochastic model and identified according to its probability of generating the output. To capture a user’s drawing habits, a composite feature combining both geometric and dynamic characteristics of sketching is defined for sketch representation. To implement the stochastic process of online multi-stroke sketch recognition, multi-stroke sketching is modeled as an HMM chain while the strokes are mapped as different HMM states. To fit the requirement of adaptive online sketch recognition, a variable state-number determining method for HMM is also proposed. The experiments prove both the effectiveness and efficiency of the proposed method. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11739685_99 |