A New Adaptive Crossover Operator for the Preservation of Useful Schemata

In genetic algorithms, commonly used crossover operators such as one-point, two-point and uniform crossover operator are likely to destroy the information obtained in the evolution because of their random choices of crossover points. To overcome this defect, a new adaptive crossover operator based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Fan, Liu, Qi-He, Min, Fan, Yang, Guo-Wei
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In genetic algorithms, commonly used crossover operators such as one-point, two-point and uniform crossover operator are likely to destroy the information obtained in the evolution because of their random choices of crossover points. To overcome this defect, a new adaptive crossover operator based on the Rough Set theory is proposed in this paper. By using this specialized crossover operator, useful schemata can be found and have a higher probability of surviving recombination regardless of their defining length. We compare the proposed crossover operator’s performance with the two-point crossover operator on several typical function optimization problems. The experiment results show that the proposed crossover operator is more efficient.
ISSN:0302-9743
1611-3349
DOI:10.1007/11739685_53