Integrated Structure and Parameter Selection for Eng-genes Neural Models
A new approach to the construction and optimisation of ‘eng-genes’ grey-box neural networks is investigated. A forward selection algorithm is used to optimise both the network weights and biases and the parameters of the system-derived activation functions. The algorithm is used for both conventiona...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new approach to the construction and optimisation of ‘eng-genes’ grey-box neural networks is investigated. A forward selection algorithm is used to optimise both the network weights and biases and the parameters of the system-derived activation functions. The algorithm is used for both conventional neural network and eng-genes modelling of a simulated Continuously Stirred Tank Reactor. The resulting eng-genes networks demonstrate superior simulation performance and transparency over a range of network sizes. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11816157_17 |