Comparative Study on Input-Expansion-Based Improved General Regression Neural Network and Levenberg-Marquardt BP Network

The paper presents an input-expansion-based improved method for general regression neural network (GRNN) and BP network. Using second-order inner product function or Chebyshev polynomial function to expand input vector of original samples, which makes input vector mapped into a higher-dimension patt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Chao-feng, Zhang, Jun-ben, Wang, Shi-tong
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents an input-expansion-based improved method for general regression neural network (GRNN) and BP network. Using second-order inner product function or Chebyshev polynomial function to expand input vector of original samples, which makes input vector mapped into a higher-dimension pattern space and thus leads to the samples data more easily separable. The classification results for both Iris data and remote sensing data show that general regression neural network is superior to Levenberg-Marquardt BP network (LMBPN) and moreover input-expansion method may efficiently enhance classification accuracy for neural network models.
ISSN:0302-9743
1611-3349
DOI:10.1007/11816157_9