A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors

A generalized expectation-maximization (GEM) algorithm is developed for Bayesian reconstruction, based on locally correlated Markov random-field priors in the form of Gibbs functions and on the Poisson data model. For the M-step of the algorithm, a form of coordinate gradient ascent is derived. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 1989-06, Vol.8 (2), p.194-202
Hauptverfasser: Hebert, T., Leahy, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A generalized expectation-maximization (GEM) algorithm is developed for Bayesian reconstruction, based on locally correlated Markov random-field priors in the form of Gibbs functions and on the Poisson data model. For the M-step of the algorithm, a form of coordinate gradient ascent is derived. The algorithm reduces to the EM maximum-likelihood algorithm as the Markov random-field prior tends towards a uniform distribution. Three different Gibbs function priors are examined. Reconstructions of 3-D images obtained from the Poisson model of single-photon-emission computed tomography are presented.< >
ISSN:0278-0062
1558-254X
DOI:10.1109/42.24868