Extended equal area criterion justifications, generalizations, applications
The extended equal area criterion (EEAC) for online transient stability analysis is considered with the following objectives. The first is to state systematically its main hypotheses and key conditions, justify the former, and suggest means to guarantee the latter. The identification and error analy...
Gespeichert in:
Veröffentlicht in: | IEEE Trans. Power Syst.; (United States) 1989-02, Vol.4 (1), p.44-52 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The extended equal area criterion (EEAC) for online transient stability analysis is considered with the following objectives. The first is to state systematically its main hypotheses and key conditions, justify the former, and suggest means to guarantee the latter. The identification and error analysis of critical machines are among the investigated issues. The second is to scan all possible types of instabilities likely to arise in practice and devise means to treat them. The extension of the EEAC to cases beyond the so-called first-swing stability makes it more robust than all direct methods developed up to now. The third objective is to extract essential information out of a large body of simulations and show that the above improvements and extensions enhance the EEAC accuracy and its capability to work properly even under stringent conditions. Possible EEAC applications are also discussed, and uses of the method as such or as an auxiliary technique for more sophisticated approaches are suggested.< > |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/59.32456 |