Yield decline in Chinese-fir plantations: a simulation investigation with implications for model complexity
A variety of competing hypotheses have been described to explain yield decline in Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations. The difficulty in implementing field experiments suggests ecosystem modeling as a viable option for examining alternative hypotheses. We present a concep...
Gespeichert in:
Veröffentlicht in: | Canadian journal of forest research 2007-09, Vol.37 (9), p.1615-1630 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A variety of competing hypotheses have been described to explain yield decline in Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations. The difficulty in implementing field experiments suggests ecosystem modeling as a viable option for examining alternative hypotheses. We present a conceptual model of Chinese-fir yield decline and explore its merits using the ecosystem-based FORECAST model. Model results suggest that yield decline is caused primarily by a decline in soil fertility, largely as a consequence of slash burning in conjunction with short rotations. However, as tree leaf area declines, there is a transition (over subsequent rotations) from seed rain based competition to bud bank based competition, increasing the competitive impact of minor vegetation on tree growth. Short rotations increase understory survival between rotations and may cause a gradual shift from tree dominance to shrub/herb dominance over subsequent rotations. These effects are most evident on nutrient-poor sites, but understory competition poses a significant yield decline risk on good sites as well. We conclude that sustainable production in Chinese-fir plantations requires the avoidance of activities that compromise soil fertility and increase understory competition. The risk and severity of yield decline would be reduced by increasing rotation lengths and avoiding plantations on infertile sites. |
---|---|
ISSN: | 0045-5067 1208-6037 |
DOI: | 10.1139/X07-018 |