Electronic damping of atomic dynamics in irradiation damage of metals

We investigate the transfer of energy from a harmonically oscillating atom in a metal to the electronic subsystem, using a direct simulation method based on time-dependent tight-binding (TDTB). We present our results in terms of a viscous damping coefficient beta to enable direct comparison with pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2007-10, Vol.19 (43), p.436209-436209 (13)
Hauptverfasser: Mason, D R, le Page, J, Race, C P, Foulkes, W M C, Finnis, M W, Sutton, A P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the transfer of energy from a harmonically oscillating atom in a metal to the electronic subsystem, using a direct simulation method based on time-dependent tight-binding (TDTB). We present our results in terms of a viscous damping coefficient beta to enable direct comparison with previous MD and Langevin dynamics simulations, over an ionic energy range relevant for radiation damage. Analysis of our results using time-dependent perturbation theory shows that the rate of energy transfer to the electrons is independent of the frequency of the driven atom at high electronic temperatures, but at low temperature may vary by an order of magnitude. Our simulations show beta also to be dependent on the electronic temperature, the position of the atom within the unit cell and even the direction of oscillation. We conclude that a TDTB simulation can give the electronic damping for an infinite metal over a limited simulation time window dependent on system size, and show how to monitor errors in dynamic simulations due to finite-size effects.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/19/43/436209