Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes
We extend the self-organizing map (SOM) in the form as proposed by Heskes to a supervised fuzzy classification method. On the one hand, this leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. On the other hand, the integration of lab...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | |
container_start_page | 46 |
container_title | |
container_volume | |
creator | Villmann, Thomas Seiffert, Udo Schleif, Frank-Michael Brüß, Cornelia Geweniger, Tina Hammer, Barbara |
description | We extend the self-organizing map (SOM) in the form as proposed by Heskes to a supervised fuzzy classification method. On the one hand, this leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. On the other hand, the integration of labeling into the location of prototypes in a SOM leads to a visualization of those parts of the data relevant for the classification. |
doi_str_mv | 10.1007/11829898_5 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19184394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19184394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-cc78cf356a55503088eec313108e5d33cde9ee60330708bf4a938953fbdb41153</originalsourceid><addsrcrecordid>eNpFkE1Lw0AURccvMK1u_AXZCG6i7-XNdGZ2lmJVqFRQ18NkMqmpMQmZFGl_vZEKXd3FOVwul7ErhFsEkHeIKtVKKyOO2IgEB5JapOKYRThBTIi4PjkAlKcsAoI00ZLTORuFsAaAVOo0YvfzzW63jRc285XP4zdfFcmyW9m63JX1Kn6xbfxT9p97IZnm603oB--1a_qm37Y-XLCzwlbBX_7nmH3MH95nT8li-fg8my4SlwrdJ85J5QoSEyuEGMYo5b0jJATlRU7kcq-9nwARSFBZwa0mpQUVWZ5xREFjdr3vbW1wtio6W7symLYrv223NahRcdJ88G72XhhQvfKdyZrmKxgE8_edOXxHv-2BWwQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes</title><source>Springer Books</source><creator>Villmann, Thomas ; Seiffert, Udo ; Schleif, Frank-Michael ; Brüß, Cornelia ; Geweniger, Tina ; Hammer, Barbara</creator><contributor>Marinai, Simone ; Schwenker, Friedhelm</contributor><creatorcontrib>Villmann, Thomas ; Seiffert, Udo ; Schleif, Frank-Michael ; Brüß, Cornelia ; Geweniger, Tina ; Hammer, Barbara ; Marinai, Simone ; Schwenker, Friedhelm</creatorcontrib><description>We extend the self-organizing map (SOM) in the form as proposed by Heskes to a supervised fuzzy classification method. On the one hand, this leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. On the other hand, the integration of labeling into the location of prototypes in a SOM leads to a visualization of those parts of the data relevant for the classification.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540379517</identifier><identifier>ISBN: 9783540379515</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540379525</identifier><identifier>EISBN: 9783540379522</identifier><identifier>DOI: 10.1007/11829898_5</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology</subject><ispartof>Artificial Neural Networks in Pattern Recognition, 2006, p.46-56</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-cc78cf356a55503088eec313108e5d33cde9ee60330708bf4a938953fbdb41153</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11829898_5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11829898_5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19184394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Marinai, Simone</contributor><contributor>Schwenker, Friedhelm</contributor><creatorcontrib>Villmann, Thomas</creatorcontrib><creatorcontrib>Seiffert, Udo</creatorcontrib><creatorcontrib>Schleif, Frank-Michael</creatorcontrib><creatorcontrib>Brüß, Cornelia</creatorcontrib><creatorcontrib>Geweniger, Tina</creatorcontrib><creatorcontrib>Hammer, Barbara</creatorcontrib><title>Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes</title><title>Artificial Neural Networks in Pattern Recognition</title><description>We extend the self-organizing map (SOM) in the form as proposed by Heskes to a supervised fuzzy classification method. On the one hand, this leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. On the other hand, the integration of labeling into the location of prototypes in a SOM leads to a visualization of those parts of the data relevant for the classification.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540379517</isbn><isbn>9783540379515</isbn><isbn>3540379525</isbn><isbn>9783540379522</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkE1Lw0AURccvMK1u_AXZCG6i7-XNdGZ2lmJVqFRQ18NkMqmpMQmZFGl_vZEKXd3FOVwul7ErhFsEkHeIKtVKKyOO2IgEB5JapOKYRThBTIi4PjkAlKcsAoI00ZLTORuFsAaAVOo0YvfzzW63jRc285XP4zdfFcmyW9m63JX1Kn6xbfxT9p97IZnm603oB--1a_qm37Y-XLCzwlbBX_7nmH3MH95nT8li-fg8my4SlwrdJ85J5QoSEyuEGMYo5b0jJATlRU7kcq-9nwARSFBZwa0mpQUVWZ5xREFjdr3vbW1wtio6W7symLYrv223NahRcdJ88G72XhhQvfKdyZrmKxgE8_edOXxHv-2BWwQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Villmann, Thomas</creator><creator>Seiffert, Udo</creator><creator>Schleif, Frank-Michael</creator><creator>Brüß, Cornelia</creator><creator>Geweniger, Tina</creator><creator>Hammer, Barbara</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes</title><author>Villmann, Thomas ; Seiffert, Udo ; Schleif, Frank-Michael ; Brüß, Cornelia ; Geweniger, Tina ; Hammer, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-cc78cf356a55503088eec313108e5d33cde9ee60330708bf4a938953fbdb41153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villmann, Thomas</creatorcontrib><creatorcontrib>Seiffert, Udo</creatorcontrib><creatorcontrib>Schleif, Frank-Michael</creatorcontrib><creatorcontrib>Brüß, Cornelia</creatorcontrib><creatorcontrib>Geweniger, Tina</creatorcontrib><creatorcontrib>Hammer, Barbara</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villmann, Thomas</au><au>Seiffert, Udo</au><au>Schleif, Frank-Michael</au><au>Brüß, Cornelia</au><au>Geweniger, Tina</au><au>Hammer, Barbara</au><au>Marinai, Simone</au><au>Schwenker, Friedhelm</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes</atitle><btitle>Artificial Neural Networks in Pattern Recognition</btitle><date>2006</date><risdate>2006</risdate><spage>46</spage><epage>56</epage><pages>46-56</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540379517</isbn><isbn>9783540379515</isbn><eisbn>3540379525</eisbn><eisbn>9783540379522</eisbn><abstract>We extend the self-organizing map (SOM) in the form as proposed by Heskes to a supervised fuzzy classification method. On the one hand, this leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. On the other hand, the integration of labeling into the location of prototypes in a SOM leads to a visualization of those parts of the data relevant for the classification.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11829898_5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Artificial Neural Networks in Pattern Recognition, 2006, p.46-56 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19184394 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Exact sciences and technology |
title | Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20Labeled%20Self-Organizing%20Map%20with%20Label-Adjusted%20Prototypes&rft.btitle=Artificial%20Neural%20Networks%20in%20Pattern%20Recognition&rft.au=Villmann,%20Thomas&rft.date=2006&rft.spage=46&rft.epage=56&rft.pages=46-56&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540379517&rft.isbn_list=9783540379515&rft_id=info:doi/10.1007/11829898_5&rft_dat=%3Cpascalfrancis_sprin%3E19184394%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540379525&rft.eisbn_list=9783540379522&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |