Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes

We extend the self-organizing map (SOM) in the form as proposed by Heskes to a supervised fuzzy classification method. On the one hand, this leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. On the other hand, the integration of lab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Villmann, Thomas, Seiffert, Udo, Schleif, Frank-Michael, Brüß, Cornelia, Geweniger, Tina, Hammer, Barbara
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the self-organizing map (SOM) in the form as proposed by Heskes to a supervised fuzzy classification method. On the one hand, this leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. On the other hand, the integration of labeling into the location of prototypes in a SOM leads to a visualization of those parts of the data relevant for the classification.
ISSN:0302-9743
1611-3349
DOI:10.1007/11829898_5