Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes
We extend the self-organizing map (SOM) in the form as proposed by Heskes to a supervised fuzzy classification method. On the one hand, this leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. On the other hand, the integration of lab...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the self-organizing map (SOM) in the form as proposed by Heskes to a supervised fuzzy classification method. On the one hand, this leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. On the other hand, the integration of labeling into the location of prototypes in a SOM leads to a visualization of those parts of the data relevant for the classification. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11829898_5 |