Clique Graph Recognition Is NP-Complete

A complete set of a graph G is a subset of V inducing a complete subgraph. A clique is a maximal complete set. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alcón, L., Faria, L., de Figueiredo, C. M. H., Gutierrez, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A complete set of a graph G is a subset of V inducing a complete subgraph. A clique is a maximal complete set. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{C}}(G)$\end{document} the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{{C}}(G)$\end{document}. Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. We prove that the clique graph recognition problem is NP-complete.
ISSN:0302-9743
1611-3349
DOI:10.1007/11917496_24