Finding Intersection Models of Weakly Chordal Graphs

We first present new structural properties of a two-pair in various graphs. A two-pair is used for characterizing weakly chordal graphs. Based on these properties, we prove the main theorem: a graph G is a weakly chordal (K2,3, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Golumbic, Martin Charles, Lipshteyn, Marina, Stern, Michal
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We first present new structural properties of a two-pair in various graphs. A two-pair is used for characterizing weakly chordal graphs. Based on these properties, we prove the main theorem: a graph G is a weakly chordal (K2,3, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{P_6}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{4P_2}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{P_2 \cup P_4}$\end{document}, H1, H2, H3)-free graph if and only if G is an edge intersection graph of subtrees on a tree with maximum degree 4. This characterizes the so called [4,4,2] graphs. The proof of the theorem constructively finds the representation. Thus, we obtain a algorithm to construct an edge intersection model of subtrees on a tree with maximum degree 4 for such a given graph. This is a recognition algorithm for [4,4,2] graphs.
ISSN:0302-9743
1611-3349
DOI:10.1007/11917496_22