Finding Intersection Models of Weakly Chordal Graphs
We first present new structural properties of a two-pair in various graphs. A two-pair is used for characterizing weakly chordal graphs. Based on these properties, we prove the main theorem: a graph G is a weakly chordal (K2,3, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We first present new structural properties of a two-pair in various graphs. A two-pair is used for characterizing weakly chordal graphs. Based on these properties, we prove the main theorem: a graph G is a weakly chordal (K2,3, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\overline{P_6}$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\overline{4P_2}$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\overline{P_2 \cup P_4}$\end{document}, H1, H2, H3)-free graph if and only if G is an edge intersection graph of subtrees on a tree with maximum degree 4. This characterizes the so called [4,4,2] graphs. The proof of the theorem constructively finds the representation. Thus, we obtain a algorithm to construct an edge intersection model of subtrees on a tree with maximum degree 4 for such a given graph. This is a recognition algorithm for [4,4,2] graphs. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11917496_22 |